训练模型部署成测试模型 更多内容
  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • 从训练作业中导入模型文件创建模型

    训练作业中导入模型文件创建模型 在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。

    来自:帮助中心

    查看更多 →

  • 语言模型推理性能测试

    语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范

    来自:帮助中心

    查看更多 →

  • 评估模型

    已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并训练模型,详情请见训练模型。 整体评估 在“模型评估”页面,您可以针对当前版本的模型进行整体评估。 图1 模型评估 “模型评估”显示当前模型的“版本”、“标签数量”、“验证集数量”。 “评估参数对比”显示当前模型和其他版本模型的评估参数值柱状图,包括“交

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型部署任务

    型”,参考表1完成部署参数设置,启动模型部署。 表1 NlP大模型部署参数说明 参数分类 部署参数 参数说明 部署配置 模型来源 选择“盘古大模型”。 模型类型 选择“NLP大模型”。 部署模型 选择需要进行部署模型部署方式 云上部署:算法部署至平台提供的资源池中。 最大TOKEN长度

    来自:帮助中心

    查看更多 →

  • 评估模型

    已在华为HiLens控制台选择“HiLens安全帽检测”技能模板新建技能,并训练模型,详情请见训练模型。 评估模型 工作流会用测试数据评估模型,在“应用开发>评估模型”页面,查看评估结果。 模型评估 图1 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。 评估参数对比

    来自:帮助中心

    查看更多 →

  • 评估模型

    Pro控制台选择“HiLens安全帽检测”可训练模板新建技能,并训练模型,详情请见训练模型。 评估模型 工作流会用测试数据评估模型,在“应用开发>评估模型”页面,查看评估结果。 模型评估 图1 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。

    来自:帮助中心

    查看更多 →

  • 管理NLP大模型部署任务

    管理NLP大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署模型配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型,但在修改部署模型不可替换。 在“模型更新”或“修改部署”后进行升级操作时,可选择全量升级或滚动升级两种方式:

    来自:帮助中心

    查看更多 →

  • 调用MaaS部署的模型服务

    调用MaaS部署模型服务 在ModelArts Studio大模型即服务平台部署成功的模型服务支持在其他业务环境中调用。 约束限制 只有“状态”是“运行中”的模型服务才支持被调用。 步骤1:获取API Key 在调用MaaS部署模型服务时,需要填写API Key用于接口的鉴权认证。

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)

    主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 eagle 投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    数据集是模型微调的基础,首先需要创建用于模型训练的数据集。 创建模型微调流水线 通过模型微调任务进行模型训练,微调任务结束后,将生成改进后的新模型部署模型 模型部署是通过为基座模型(即原模型)和微调后的新模型创建用于预测的模型服务的过程实现。 测试模型调优效果 在线测试微调后的模型(输入问题发起请求获取数据分析结

    来自:帮助中心

    查看更多 →

  • 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类

    准备数据集:获取新闻数据集,并上传到OBS。 创建模型:选择Qwen2-7B基础模型,使用推荐权重创建个人专属模型。 调优模型:使用不同的调优参数去训练模型部署模型服务:将调优后的模型部署模型服务。 使用模型服务:在MaaS体验模型服务,测试推理结果。 结果分析:分析模型的调优结果和推理结果,对比新闻分类效果。

    来自:帮助中心

    查看更多 →

  • 部署测试

    规格完成依赖配置编排后,ISV可以在规格上架前,对规格的自动化部署、卸载及系统功能等能力进行测试。您可在“应用管理 > 应用详情 > 应用规格”,点击“部署测试”。点击“开始安装”。安装过程,会根据编排的资源,启动所需要的云资源购买、配置及应用的部署。规格部署成功点击“删除实例”,完成规格卸载验证。

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练云状类型识别模型,并查看训练模型准确率和误差的变化。 训练模型 评估模型

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练图像分类模型,并查看训练模型准确率和误差的变化。 训练模型 评估模型

    来自:帮助中心

    查看更多 →

  • 线上训练得到的模型是否支持离线部署在本地?

    线上训练得到的模型是否支持离线部署在本地? 通过ModelArts预置算法训练得到的模型是保存在OBS桶里的,模型支持下载到本地。 在训练作业列表找到需要下载模型训练作业,单击名称进入详情页,获取训练输出路径。 图1 获取训练输出位置 单击“输出路径”,跳转至OBS对象路径,下载训练得到的模型。

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练刹车盘类型识别模型,并查看训练模型准确率和误差的变化。 训练模型 评估模型

    来自:帮助中心

    查看更多 →

  • 创建模型训练服务项目

    创建模型训练服务项目 创建项目用于创建项目空间,并创建JupyterLab环境容器。 在模型训练服务首页,单击“KPI异常检测”模板中的“使用模板创建”,如图1所示。 图1 创建项目 按照界面提示,配置“创建项目”对话框参数。 单击“创建”,完成模型训练服务项目的创建。 在模型训练服务首页,项目新增完成,如图2所示。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了