AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习语言模型 更多内容
  • PL/SQL语言

    PL/SQL语言 GaussDB数据库 基本兼容的PL/SQL操作符、表达式,控制语句、集合和record等等,不支持预定义的PL/SQL常量和类型、子类型等。 PL/SQL基本语法 数据类型兼容性 控制语句 集合和Record 静态SQL 动态SQL Trigger

    来自:帮助中心

    查看更多 →

  • 安装GO语言

    安装GO语言 安装路径输入不合法 部署应用中断 权限不够 参数含反斜杠“\”(特例) 环境下没有主机 环境不存在 windows主机部署应用失败 使用sudo权限执行报错 部署进程被第三方杀毒软件拦截 Windows主机上检测到版本与安装版本不匹配 路径不合法 在Centos上安装软件提示网络故障

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 其他编程语言

    其他编程语言 APP认证工作原理 构造规范请求。 将待发送的请求内容按照与API网关后台约定的规则组装,确保客户端签名、API网关后台认证时使用的请求内容一致。 使用规范请求和其他信息创建待签字符串。 使用AK/SK和待签字符串计算签名。 将生成的签名信息作为请求消息头添加到HT

    来自:帮助中心

    查看更多 →

  • PL/SQL语言

    PL/SQL语言 GaussDB 数据库基本兼容的PL/SQL操作符、表达式,控制语句、集合和record等等,不支持预定义的PL/SQL常量和类型、子类型等。 PL/SQL基本语法 数据类型兼容性 控制语句 集合和Record 静态SQL 动态SQL Trigger

    来自:帮助中心

    查看更多 →

  • 安装GO语言

    安装GO语言 添加该应用步骤可以在主机上安装GO语言,信息配置如下所示。 表1 参数说明 参数项 说明 步骤显示名称 步骤添加后在部署步骤显示的名称。仅支持汉字、英文字母、数字、空格、或-_,;:./()()符号,其中空格不可在名称开头或结尾使用,长度为1-128。 环境 选择当

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    数据集是模型微调的基础,首先需要创建用于模型训练的数据集。 创建模型微调流水线 通过模型微调任务进行模型训练,微调任务结束后,将生成改进后的新模型。 部署模型 模型部署是通过为基座模型(即原模型)和微调后的新模型创建用于预测的模型服务的过程实现。 测试模型调优效果 在线测试微调后的模型(输入问题发起请求获取数据分

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    业记录。模型训练页面展示了历史作业的执行情况、模型的评估指标和生成时间。模型的评估指标是使用训练数据集产生的。 单击“查看参数”可以查看该模型训练时指定的机器学习作业参数;逻辑回归作业可以单击“查看中间结果”实时查看每一次迭代的评估指标。 图12 模型训练参数 进行模型评估。在历

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 路网数字化服务-成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 应用场景

    据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • 准备工作

    超参说明 超参 说明 学习率 影响模型收敛程度,决定了模型在每次更新权重时所采用的步长。学习率过高,模型可能会过度调整权重,导致不稳定的训练过程;如果学习率过低,模型训练速度会变慢,甚至陷入局部最优。 batch size 影响训练速度,有时候也会影响模型精度。 micro batch

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了