中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    深度学习训练数据 更多内容
  • 排序策略

    ”、“16核|128GiB”。 训练数据的obs路径 单击选择特征工程排序样本预处理生成的训练数据所在的OBS路径。 即特征工程“排序样本预处理”结果保存路径下具体的训练文件路径。 测试数据的obs路径 单击选择特征工程排序样本预处理生成的测试数据所在的OBS路径。 即特征工程“

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 自动学习训练作业创建失败

    自动学习训练作业创建失败 出现此问题,一般是因为后台服务故障导致的,建议稍等片刻,然后重新创建训练作业。如果重试超过3次仍无法解决,请联系华为云技术支持。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    力,保障用户训练作业的长稳运行 提供训练作业断点续训与增量训练能力,即使训练因某些原因中断,也可以基于checkpoint接续训练,保障需要长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 盘古自然语言大模型的适用场景有哪些

    自然语言处理 大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模型,可以根据业务需求开发出诸如

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    8。 重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。

    来自:帮助中心

    查看更多 →

  • 基本概念

    督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据训练效果并不明显。 降低正则化约束。 正则化约束是为了防止模型过拟合,如果模型压根不存在过拟合而是欠拟合了,那么

    来自:帮助中心

    查看更多 →

  • 产品概述

    邀请云租户作为数据提供方,动态构建 可信计算 空间,实现空间内严格可控的数据使用和监管。 数据融合分析 支持对接多个数据参与方的主流数据存储系统,为数据消费者实现多方数据的SQL Join等融合分析,各方的敏感数据在具有安全支撑的聚合计算节点中实现安全统计。 计算节点 数据参与方使用数

    来自:帮助中心

    查看更多 →

  • 产品功能

    用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算 节点 数据参与方使用数据源计算节点模块实现自主可控的数据源注册、隐私策略(脱敏、加密)的设定、元数据的发布等,为数据源计算节

    来自:帮助中心

    查看更多 →

  • 准备训练数据

    准备训练数据 在创建抽取模型时,需要您提前准备用于训练模型的数据并上传至OBS目录,数据格式为txt文本的自然语言短句。KG服务当前支持的数据类型请参见训练数据类型介绍。 准备数据流程如下: 准备待标注的数据 定义三元组类型(schema) 标注数据 上传至OBS 准备待标注的数据

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • ModelArts

    物体检测图片标注,一张图片是否可以添加多个标签? 创建预测分析自动学习项目时,对训练数据有什么要求? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 更多 训练作业 为什么资源充足还是在排队? 训练作业一直在等待中(排队)? ModelArts训练好后的模型如何获取? 更多 部署上线 Mo

    来自:帮助中心

    查看更多 →

  • 创建预测分析自动学习项目时,对训练数据有什么要求?

    成。 训练数据训练数据列数一致,总数据量不少于100条不同数据(有一个特征取值不同,即视为不同数据)。 训练数据列内容不能有时间戳格式(如:yy-mm-dd、yyyy-mm-dd等)的数据。 如果某一列的取值只有一种,会被视为无效列。请确保标签列的取值至少有两个且无数据缺失。

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了