华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练精度低 更多内容
  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 精度问题诊断

    得到和标杆数据相同的输出,因此可以判断出转换得到的text_encoder模型是产生pipeline精度误差的根因。通过下一小节可以进一步确认模型精度的差异。 父主题: 模型精度调优

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率。 在昇腾卡上执行时,需要在

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率。 在昇腾卡上执行时,需要在

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率。 在昇腾卡上执行时,需要在

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    Step3 启动训练脚本 启动训练前需修改启动训练脚本demo.sh 内容。具体请参考•修改启动脚本。 对于falcon-11B训练任务开始前,需手动替换tokenizer中的config.json,具体请参见falcon-11B模型。 修改完yaml配置文件后,启动训练脚本;模型不

    来自:帮助中心

    查看更多 →

  • 盘古自然语言大模型的适用场景有哪些

    自然语言处理 大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模型,可以根据业务需求开发出诸如

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    力,保障用户训练作业的长稳运行 提供训练作业断点续训与增量训练能力,即使训练因某些原因中断,也可以基于checkpoint接续训练,保障需要长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS

    来自:帮助中心

    查看更多 →

  • 在Workflow中更新已部署的服务

    description="训练学习率策略(10:0.001,20:0.0001代表0-10个epoch学习率0.001,10-20epoch学习率0.0001),如果不指定epoch, 会根据验证精度情况自动调整学习率,并当精度没有明显提升时,训练停止")),

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 自动学习的每个项目对数据有哪些要求?

    单条音频时长应大于1s,大小不能超过4MB。 适当增加训练数据,会提升模型的精度。声音分类建议每类音频至少20条,每类音频总时长至少5分钟。 建议训练数据和真实识别场景的声音保持一致并且每类的音频尽量覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。 标注质

    来自:帮助中心

    查看更多 →

  • 基本概念

    ,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更

    来自:帮助中心

    查看更多 →

  • 执行微调训练任务

    执行微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现AI应用的门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 方案概述

    传统系统平台仅涉及信息化、业务系统繁多,数据壁垒高,业务全生命周期数据无法有效整合; 传统管治服务重线下排查,准确率和时效性,个人经验要求高,管治效果差,投入大,成效。 传统环境行业重机理微观分析,并无智能化手段在管治端将政策落地,管治最后一公里的手段太有限,盲区多。 监测硬件铺设与

    来自:帮助中心

    查看更多 →

  • 编排Workflow

    description="训练学习率策略(10:0.001,20:0.0001代表0-10个epoch学习率0.001,10-20epoch学习率0.0001),如果不指定epoch, 会根据验证精度情况自动调整学习率,并当精度没有明显提升时,训练停止")),

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了