AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练精度低 更多内容
  • 训练模型

    训练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • NLP大模型训练流程与选择建议

    若拥有大量标注数据,且需要更高的特定任务推理精度,则全量微调是优先选择。 LoRA微调:适用于数据量较小、侧重通用任务的情境。LoRA(Low-Rank Adaptation)微调方法通过调整模型的少量参数,以资源实现较优结果,适合聚焦于领域通用任务或小样本数据情境。例如,在针

    来自:帮助中心

    查看更多 →

  • 什么是园区智能体

    需收费。 基于华为自研的鲲鹏系列处理器和昇腾AI芯片,提供高并发时延的多模态数据分析能力,保证园区场景业务的高效闭环。 面向泛园区场景提供多种智能分析算法,基于深度学习等领先技术,保证人、车辆、事件、行为的高精度感知和处理。 通过视频分析、图像处理和 自然语言处理 技术,对园区和城

    来自:帮助中心

    查看更多 →

  • 排序策略

    保存根路径 单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 训练模型

    。 “训练模型”:可选“基础模型(精度较低,但推理速度快)”和“高精模型(精度高,但推理速度较慢)”。 “车辆场景”:可选“城市场景”和“工地场景”。 单击“训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示训练类型。可选择值:[pt、sf、rm、ppo],pt代表预训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练。

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 什么是视频智能分析服务 (VIAS)

    步升级、按需收费。 基于鲲鹏系列处理器和昇腾AI芯片,提供高并发时延的多模态数据分析能力,保证园区场景业务的高效闭环。 面向泛园区场景提供多种智能分析算法,基于深度学习等领先技术,保证人、车辆、事件、行为的高精度感知和处理。 通过视频分析、图像处理和自然语言处理技术,对园区和城

    来自:帮助中心

    查看更多 →

  • 时间精度(time

    时间精度(time_confidence) 数值 含义 0 不具备或不可用 1 100 2 50 3 20 4 10 5 2 6 1 7 0.5 8 0.2 9 0.1 10 0.05 11 0.02 12 0.01 13 0.005 14 0.002 15 0.001 16 0

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率。 在昇腾卡上执行时,需要在

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率。 在昇腾卡上执行时,需要在

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,建议在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。若需要在生产环境中进行推理精度测试,请通过调用接口的方式进行测试。 Step1 执行精度测试 精度测试需要数据集进行测试。推荐公共数据集mmlu

    来自:帮助中心

    查看更多 →

  • ModelArts

    从0-1制作 自定义镜像 并创建AI应用 05 自动学习 ModelArts自动学习是帮助人们实现AI应用的门槛、高灵活、零代码的定制化模型开发工具。 自动学习简介 自动学习功能介绍 项目分类 图像分类 物体检测 预测分析 声音分类 文本分类 操作指导 准备数据 创建项目 数据标注 自动训练 部署上线 07 AI

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:sft、rm、ppo、dpo。 sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    附录:指令微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:sft、rm、ppo、dpo。 sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了