AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练参数数目 更多内容
  • 场景介绍

    ,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 预训练

    68长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。

    来自:帮助中心

    查看更多 →

  • ALM-257564679 学习到动态mac地址个数达到上限

    业务质量告警 告警参数 参数名称 参数含义 OID 该告警所对应的MIB节点的OID号。 VlanId VLAN ID。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    68长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    完成后,参考表1完成训练参数设置。 表1 NLP大模型微调参数说明 参数分类 训练参数 参数说明 训练配置 模型来源 选择“盘古大模型” 模型类型 选择“NLP大模型”。 训练类型 选择“微调”。 训练目标 全量微调:在模型有监督微调过程中,对大模型的全部参数进行更新。这种方法通

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    临的实际困难,尤其是高昂的模型训练与部署成本,这往往成为创意落地的阻碍。通过大量开发者实践,针对主流昇腾云开源大模型,沉淀最佳的算力组合方案,为开发者在开发模型的最后一步,提供最佳实践的算力方案、实践指南和文档,节省开发者学习和试错资金成本,提升学习和开发效率。 父主题: 功能介绍

    来自:帮助中心

    查看更多 →

  • ALM-257564680 学习到动态mac地址个数达到上限

    业务质量告警 告警参数 参数名称 参数含义 OID 该告警所对应的MIB节点的OID号。 L2IfPortName 接口名字。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MA

    来自:帮助中心

    查看更多 →

  • 大数据分析

    均涌现出超高水平AI。人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    68长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建联邦学习工程步骤如下。 单击“创建”,弹出“创建训练”对话框。 配置联邦学习工程参数,如表1所示。 表1 参数说明 参数名称 参数说明 请选择模型训练方式 模型训练方式。包含如下选项: 新建模型训练工程 新建联邦学习工程 新建训练服务 新建超参优化服务 请选择:新建联邦学习工程。

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    ,注释掉deepspeed参数。 是否使用固定句长 是,配置以下参数 packing: true 否,默认使用动态句长,注释掉packing参数。 选用数据精度格式,以下参数二选一。 bf16,配置以下参数 bf16: true fp16,配置以下参数 fp16: true 是否使用自定义数据集

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B

    来自:帮助中心

    查看更多 →

  • ALM-157163635 学习到动态MAC地址个数达到上限

    隧道对端IP地址。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习数目。 处理步骤 1. 删除不需要的MAC,或者执行命令peer

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    否,默认选用Accelerate加速深度学习训练框架,注释掉deepspeed参数。 是否开启NPU FlashAttention融合算子,具体约束详见NPU_Flash_Attn融合算子约束 是,配置以下参数。 flash_attn: sdpa 否,配置以下参数关闭。 flash_attn:

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    否,默认选用Accelerate加速深度学习训练框架,注释掉deepspeed参数。 是否开启NPU FlashAttention融合算子,具体约束详见NPU_Flash_Attn融合算子约束 是,配置以下参数。 flash_attn: sdpa 否,配置以下参数关闭。 flash_attn:

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    在图片都标注完成后,单击右上角“开始训练”,在“训练设置”中,在“增量训练版本”中选择之前已完成的训练版本,在此版本基础上进行增量训练。其他参数请根据界面提示填写。 设置完成后,单击“确定”,即进行增量训练。系统将自动跳转至“模型训练”页面,待训练完成后,您可以在此页面中查看训练详情,如“训练精度”、“评估结果”、“训练参数”等。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了