AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习需要高配cpu么 更多内容
  • 深度学习模型预测

    是否必选 说明 field_name 是 数据在数据流中的字段名。 图像分类中field_name类型声明为ARRAY[TINYINT]。 文本分类中field_name类型声明为String。 model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    是否必选 说明 field_name 是 数据在数据流中的字段名。 图像分类中field_name类型声明为ARRAY[TINYINT]。 文本分类中field_name类型声明为String。 model_path 是 模型存放在OBS上的完整路径,包括模型结构和模型权值。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 大数据分析

    合动作空间,可行动作数量在10^7量级。对于CPU计算能力要求较高。 训练任务快速部署:客户进行AI强化学习时,需要短时间(10mins)拉起上万核CPU,对动态扩容能力要求较高。 竞享实例的应用 该AI学习引擎采用竞享实例提供CPU资源。得益于竞享实例的快速扩容与成本优势,引擎

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    Operations Center,简称COC),开通并授权COC服务。 对于IAM用户,额外配置COC资源操作类权限,详细内容,请参见配置E CS 自助运维自定义策略。 该功能依赖UniAgent。UniAgent是统一数据采集Agent,支持脚本下发和执行。 若ECS未安装UniAgent,则无

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如表1 Host CPU报表主要内容所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始snapshot的Load

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如表1所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • CPU调度

    CPU调度 CPU管理策略 增强型CPU管理策略 父主题: 调度

    来自:帮助中心

    查看更多 →

  • 最新动态

    Framework预处理接口、支持手工运行时配置来进行调试。 公测 2020年8月 序号 功能名称 功能描述 阶段 1 上线商用技能:人脸检测技能、多区域客流分析技能、车牌识别技能、安全帽检测技能。 人脸检测技能 面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动

    来自:帮助中心

    查看更多 →

  • CPU检查

    判断cpu核数是否满足IEF要求。edgectl check cpu无检查CPU:示例执行结果:

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • 约束与限制

    当不使用GPU时,Pod规格满足如下要求: 表1 Pod规格限制要求 Pod规格限制项 限制取值范围 Pod的CPU 0.25核-32核,或者自定义选择48核、64核。 CPU必须为0.25核的整数倍。 Pod的内存 1GiB-512GiB。 内存必须为1GiB的整数倍。 Pod的CPU/内存配比值

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    协同人的数据监控范围遵循当前用户针对该学习项目选择的数据数据范围 设置完毕后单击【发布】即可,该学习项目创建完成 学习项目管理 任务分派 通过【任务分派】功能可以指派具体人员学习,被选中的学员会将以任务形式接受消息通知和待办,在规定期限内完成学习任务。管理员可进行实时监控并获得学习相关数据。 操作路

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 目标集群资源规划

    ,利用CPU积分机制保证基准性能,适合平时不会持续高压力使用CPU,但偶尔需要提高计算性能完成工作负载的场景,可用于轻量级Web 服务器 、开发、测试环境以及中低性能数据库等场景。 GPU加速型:提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    默认模型:修改知识库内容后自动生效。 轻量级深度学习模型:修改知识库内容后训练模型发布生效。 重量级深度学习模型:修改少量知识库内容无需重新训练发布,但会导致问答变慢,模型运行中时单击更新按钮即可;当知识库语料变更较大时导致模型效果下降,重新训练模型。 新建模型 在机器人列表,单

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了