华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习线性回归数学 更多内容
  • 使用TensorFlow进行线性回归

    使用TensorFlow进行线性回归 首先在FunctionGraph页面将tensorflow添加为公共依赖 图1 tensorflow添加为公共依赖 在代码中导入tensorflow并使用 import json import random # 导入 TensorFlow 依赖库

    来自:帮助中心

    查看更多 →

  • 使用pytorch进行线性回归

    使用pytorch进行线性回归 在FunctionGraph页面将torch添加为公共依赖 图1 torch添加为公共依赖 在代码中导入torch并使用 # -*- coding:utf-8 -*- import json # 导入torch依赖 import torch as t

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    介绍华为EI服务,ModelArts平台及实验 Python编程基础 介绍Python编程相关的基础知识 人工智能数学基础 介绍数学与人工智能的关系,线性代数、概率论及更优化问题 深度学习预备知识和深度学习概览 介绍深度学习预备知识,深度学习概览 华为云EI概览 介绍华为AI的认知与EI的由来,并详细介绍华为云EI企业智能

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 数学函数

    数学函数 数学函数概览 abs acos asin atan bin bround cbrt ceil conv cos cot1 degrees e exp factorial floor greatest hex least ln log log10 log2 median negative

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称 说明 名称 自定

    来自:帮助中心

    查看更多 →

  • 公共依赖Demo

    公共依赖Demo 使用TensorFlow进行线性回归 使用pytorch进行线性回归 sklearn gym 父主题: 依赖包管理

    来自:帮助中心

    查看更多 →

  • 数学函数

    数学函数 数学函数概览 abs acos asin atan bin bround cbrt ceil conv cos cot1 degrees e exp factorial floor greatest hex least ln log log10 log2 median negative

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 数学函数

    数学函数 ** 输入:** 1 expr1 ** expr2 输出: 1 expr1 ^ expr2 MOD 输入:MOD 1 expr1 MOD expr2 输出: 1 expr1 % expr2 NULLIFZERO 可以使用tdMigrateNULLIFZERO参数来配置NULLIFZERO迁移。

    来自:帮助中心

    查看更多 →

  • 排序策略

    。 逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。单击查看逻辑斯蒂回归详情信息。 表1

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三

    来自:帮助中心

    查看更多 →

  • 功能描述

    线性规划问题的求解服务,详见:数学规划求解器。 数值计算求解器:通过数值计算方法,高效求解CAE仿真底层的数学问题。OptVerse服务提供线性方程组的直接法和迭代法及预处理求解、非线性方程组的迭代求解、矩阵的特征值求解、智能加速求解以及基于云HPC的高性能计算服务,详见:数值计算求解器。

    来自:帮助中心

    查看更多 →

  • 开发指南

    把问题的输入,即需求、资源、约束条件、求解目标用一定的数学模型表示出来,然后通过数学规划和元启发式算法等多种优化引擎对模型求解。 输出优化方案 通过对数学模型的优化求解,将获得一个最优方案,用于解决实际问题。 支持功能 数学规划求解器 求解性能 LP/MIP求解性能,3万约束3.

    来自:帮助中心

    查看更多 →

  • 功能描述

    线性规划问题的求解服务。 数值计算求解器:通过数值计算方法,高效求解CAE仿真底层的数学问题。OptVerse服务提供线性方程组的直接法和迭代法及预处理求解、非线性方程组的迭代求解、矩阵的特征值求解、智能加速求解以及基于云HPC的高性能计算服务。 高级计划与排程:以运筹学理论基础

    来自:帮助中心

    查看更多 →

  • 数学优化求解器

    把问题的输入,即需求、资源、约束条件、求解目标用一定的数学模型表示出来,然后通过数学规划和元启发式算法等多种优化引擎对模型求解。 输出优化方案 通过对数学模型的优化求解,将获得一个最优方案,用于解决实际问题。 支持功能 数学规划求解器 求解性能 LP/MIP求解性能,3万约束3.

    来自:帮助中心

    查看更多 →

  • 数学函数概览

    数学函数概览 DLI所支持的数学函数如数学函数所示。 表1 数学函数 函数 命令格式 返回值 功能简介 abs abs(DOUBLE a) DOUBLE或INT 取绝对值。 acos acos(DOUBLE a) DOUBLE 返回给定角度a的反余弦值。 asin asin(DOUBLE

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    (stationary) AR(p):自回归模型,当前值可以描述为p个之前值的线性组合。利用线性组合的权值即可预测下一个值。 MA(q):移动平均模型,当前值可以描述为序列均值加上q个之前值的白噪声的线性组合。利用线性组合的权值也可预测下一个值。 ARMA(p, q):自回归移动平均模型,综合了A

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了