AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习线性回归原理 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称 说明 名称 自定

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 排序策略

    。 逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。单击查看逻辑斯蒂回归详情信息。 表1

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    (stationary) AR(p):自回归模型,当前值可以描述为p个之前值的线性组合。利用线性组合的权值即可预测下一个值。 MA(q):移动平均模型,当前值可以描述为序列均值加上q个之前值的白噪声的线性组合。利用线性组合的权值也可预测下一个值。 ARMA(p, q):自回归移动平均模型,综合了A

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    (stationary) AR(p):自回归模型,当前值可以描述为p个之前值的线性组合。利用线性组合的权值即可预测下一个值。 MA(q):移动平均模型,当前值可以描述为序列均值加上q个之前值的白噪声的线性组合。利用线性组合的权值也可预测下一个值。 ARMA(p, q):自回归移动平均模型,综合了A

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、语音识别、 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业 等待执行完成,在“历史作

    来自:帮助中心

    查看更多 →

  • 技术原理

    技术原理 父主题: CA代理服务介绍

    来自:帮助中心

    查看更多 →

  • 技术原理

    技术原理 CA服务技术原理图请参见图1。 图1 CA服务的技术原理 用户在通过CA服务申请证书时,需要根据实际需求来配置CA信息、证书模板、白名单和CRL等信息。 申请证书方式: 手动申请:分为通过基本信息申请证书、通过上传 CS R文件申请证书两种方式。 自动申请:通过配置CMP协

    来自:帮助中心

    查看更多 →

  • 方案原理

    方案原理 本章节分别通过生产站点正常工作、生产站点故障以及生产站点和跨可用区容灾站点同时故障三个场景,介绍在不同的故障情况下,本方案如何接管用户的业务。 生产站点正常工作 当生产站点正常工作时,状态如图1所示。 通过SDRS,在区域A内将可用区1的生产站点 服务器 的数据、配置信息同

    来自:帮助中心

    查看更多 →

  • 原理介绍

    原理介绍 作业流(Workflow)是对作业流程及其各操作步骤之间业务规则的抽象、概括描述。作业流提供了一种很好的工程化的方式来解决业务问题,使得业务抽象、流程格式化、易维护和易拓展,实现一定程度的业务可视化。 下面将介绍两种开发模式的作业流。 分支开发模式:是采用直接 clone

    来自:帮助中心

    查看更多 →

  • 迁移原理

    迁移原理 CDM 迁移原理 用户使用CDM服务时,CDM管理系统在用户VPC中发放全托管的CDM实例。此实例仅提供控制台和Rest API访问权限,用户无法通过其他接口(如SSH)访问实例。这种方式保证了CDM用户间的隔离,避免数据泄漏,同时保证VPC内不同云服务间数据迁移时的传输

    来自:帮助中心

    查看更多 →

  • 原理介绍

    原理介绍 工业数字模型驱动引擎(Industrial Digital Model Engine,简称iDME)基于数据模型驱动,以正向设计即开发的模式构建云化SaaS多租的业务应用,基于全领域数据模型和数字化模型,构建企业级数字化与智能化数据应用。 图1 iDME工作原理 数据建模引擎是怎样工作的?

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了