AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习提取时间序列特征 更多内容
  • 响应提取

    响应提取 响应提取提取接口响应结果的某一部分,命名为参数,供后续测试步骤参数化调用。响应提取需要在前序测试步骤定义,后续测试步骤使用。 在前序测试步骤中,在“响应提取”页签创建要传递的参数。响应提取来源用到内置参数,请参考内置参数了解如何使用内置参数。响应提取同时支持正则表达式

    来自:帮助中心

    查看更多 →

  • 验证分享提取码

    验证分享提取码 功能介绍 验证分享提取码。 URI POST /koodrive/ose/v1/share/verify 请求参数 表1 请求Header参数 参数 是否必选 参数类型 描述 Authorization 是 String 该字段存储的是Access Token。调

    来自:帮助中心

    查看更多 →

  • 学习任务

    自由模式:可以不按顺序学习课件,可随意选择一个开始学习 解锁模式:设置一个时间,按时间进程解锁学习,解锁模式中暂时不支持添加线下课和岗位测评 图4 选择模式 阶段任务 图5 阶段任务 指派范围:选择该学习任务学习的具体学员 图6 指派范围1 图7 指派范围2 设置:对学习任务进行合格标准、奖励等设置

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 对待注入水印的源数据有什么要求?

    由于注入水印的原理是将水印原子信息嵌入到不同特征的数据中去,因此源数据特征越多,越能嵌入完整的水印信息、提高提取成功率,并且即使缺失部分数据也不影响水印提取。所以对需要注入水印的数据有如下要求: 待注入水印的源数据需要大于等于1000行。 小于1000行的源数据有可能因为特征不够导致提取水印失败。 尽量选

    来自:帮助中心

    查看更多 →

  • 提交特征工程作业

    所有输出数据(用户物品特征特征映射、域特征值数目统计结果、训练集、测试集)的存储都路径,文件夹。 全局特征配置文件路径(global_features_information_path) 是 String 该文件为JSON格式,包含特征名、特征大类、特征值类型。全局特征文件详细内容可以通过查询全局特征配置获取。

    来自:帮助中心

    查看更多 →

  • 召回策略

    通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 默认选择初始格式 时间选择 时间选择包括数据时间和行为时间跨度。 数据时间:用于匹配在起始时间和终止时间内的行为数据。

    来自:帮助中心

    查看更多 →

  • IoTDB基本原理

    一个节点为叶子节点。IoTDB的语法规定,ROOT节点到叶子节点的路径以“.”连接,以此完整路径命名IoTDB中的一个时间序列。例如,下图最左侧路径对应的时间序列名称为“ROOT.ln.wf01.wt01.status”。 图3 IoTDB数据模型 IoTDB与其他组件的关系 I

    来自:帮助中心

    查看更多 →

  • 提交特征工程作业

    提交特征工程作业 提交特征工程作业 查询全局特征配置 父主题: 作业相关API

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图

    来自:帮助中心

    查看更多 →

  • 学件简介

    主要实现数据的预处理,包括标签处理、缺失值填充、数据标准化等。 特征处理模块 主要实现对KPI的数据分布特征进行分析,自动选择特征及参数。并提供四大类,80+特征的自动提取。 模型管理模块 主要实现根据KPI的标签、数据分布特征等进行异常检测算法的自动选择、参数设置及模型训练、推理。 数据交互模块

    来自:帮助中心

    查看更多 →

  • 大数据分析

    训练任务快速部署:客户进行AI强化学习时,需要短时间(10mins)拉起上万核CPU,对动态扩容能力要求较高。 竞享实例的应用 该AI学习引擎采用竞享实例提供CPU资源。得益于竞享实例的快速扩容与成本优势,引擎可以短时间生成超大规模AI(Actor)同时执行更多的策略,缩短模拟时间。而凭借竞享实例

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • PERF03-02 选择合适规格的虚拟机和容器节点

    功耗密集型业务(如高性能计算、人工智能、深度学习等场景)主要就是消耗计算维度的容量。 内存密集型业务(如大数据处理、图像/视频处理、游戏开发、数据库等场景)主要消耗内存和存储维度的容量。 存储密集型业务(如大型数据库、大数据分析、大规模文件存储、编译构建等场景)可能会比较消耗存储的带宽。 根据业务的特征选择合适

    来自:帮助中心

    查看更多 →

  • 模型训练

    计算指标的平均策略。 包含如下选项: auto macro micro weighted 是否使用增量学习 训练时是否使用增量学习,默认关闭。 是否进行集成学习 训练时是否进行集成学习,默认开启。开启后训练结果增加模型集成节点,训练结果中生成两个stacking类型的模型包。 单击图

    来自:帮助中心

    查看更多 →

  • 序列管理

    序列管理 创建序列 在“对象浏览器”窗格,右键单击“序列”,然后选择“创建序列”。Data Studio弹出“创建序列”对话框。 设置相关参数以创建序列。 在“序列名称”字段输入序列名称。 勾选“区分大小写”,“序列名称”字段文本将区分大小写。例如,输入的序列名称为“Employ

    来自:帮助中心

    查看更多 →

  • 修改数据源特征

    修改数据源特征 功能介绍 修改数据源中的特征。 调试 您可以在 API Explorer 中调试该接口。 URI PUT /v2.0/{project_id}/workspaces/{workspace_id}/data-sources/{datasource_id}/data-struct

    来自:帮助中心

    查看更多 →

  • 升级中心特征库无法升级

    升级中心特征库无法升级 问题描述 特征库升级失败,提示连接升级 服务器 失败,请检查网络配置。 可能的原因 License授权问题,或者上游设备做了安全限制导致网络不通。 解决方法 本地授权版本,确认相应特征库已授权。 云端授权版本,确定乾坤云上该设备已经绑定边界防护与响应套餐,并且套餐状态为已部署。

    来自:帮助中心

    查看更多 →

  • 升级中心特征库无法升级

    升级中心特征库无法升级 问题描述 特征库升级失败,提示连接升级服务器失败,请检查网络配置。 可能的原因 License授权问题,或者上游设备做了安全限制导致网络不通。 解决方法 本地授权版本,确认相应特征库已授权。 云端授权版本,确定乾坤云上该设备已经绑定边界防护与响应套餐,并且套餐状态为已部署。

    来自:帮助中心

    查看更多 →

  • 自定义IPS特征

    入侵防御”。单击“自定义IPS特征”中的“查看规则”,进入“自定义IPS特征”页面。 在“自定义IPS特征”页签中,单击列表右上角“添加自定义IPS特征”,填写规则如表 添加自定义IPS特征所示。 表1 添加自定义IPS特征 参数名称 参数说明 名称 需要添加的特征名称。 命名规则如下:

    来自:帮助中心

    查看更多 →

  • 创建和管理序列

    SEQUENCE 除了为序列指定了cache,方法二所实现的功能基本与方法一类似。但是一旦定义cache,序列将会产生空洞(序列值为不连贯的数值,如:1.4.5),并且不能保序。另外为某序列指定从属列后,该列删除,对应的sequence也会被删除。 虽然数据库并不限制序列只能为一列产生默认值,但建议不要多列共用同一个序列。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了