AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习模型于了提出 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。Accelerate的核心思想是通过模型并行和数据并

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。 中量级:训练时长约为轻量级的3-5倍;

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因此,选择哪种格式取决具体的应用场景和训练需求。 父主题: 训练脚本说明

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因此,选择哪种格式往往取决具体的应用场景和训练需求。 父主题: 训练脚本说明

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    综上所述,BF16因其与FP32相似的数值范围和稳定性,在大模型训练中提供优势。而FP16则在计算效率和内存使用方面有其独特的优点,但可能在数值范围和稳定性方面略逊一筹。因此,选择哪种格式往往取决具体的应用场景和训练需求。 父主题: 训练脚本说明

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    从行业方向上, 医疗智能体 主要面对以下行业的从业者: 药物研发公司 平台以AI技术为核心的药物研发功能,通过内置的AI模型,加速药物研发过程。 科研单位 平台以流程管理及Notebook为核心,内置常见的基因组数据分析流程,科研工作者可以非常方便的实现数据管理,开发自己的分析流程,分享自己的数据分析流程,以及复现业内已有的流程。

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    华为企业人工智能高级开发者培训 培训简介 基于ICT网络、以人工智能为引擎的第四次工业革命正将人类带入一个万物感知、万物互联、万物智能的智能世界。国务院2017年7月份印发了《新一代人工智能发展规划》,将人工智能发展提高到国家战略层面,规划明确要求“到2020年人工智能总体技术和应用与世界先

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。 输出结果:数字人视频。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    firewall_status_check 系统防火墙状态检查 当前实例的防火墙(即iptables设置)目前处于开启状态,如果 服务器 开启防火墙,并设置屏蔽外界访问的规则,可能会导致远程访问实例失败。 guestos.memory.oom_events 检查操作系统是否OOM 当前实例Guest

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    Gallery功能介绍 面向开发者提供AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供大量基于昇腾云底座适配的三方开源大模型,同步提供可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    模型微调的基础,通过在微调数据集上进行训练从而获得改进后的新模型。 创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    、相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    知因子分解机。 深度网络因子分解机,结合因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    加数据,训练效果并不明显。 降低正则化约束。 正则化约束是为了防止模型过拟合,如果模型压根不存在过拟合而是欠拟合,那么就考虑是否降低正则化参数λ或者直接去除正则化项。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练,用户可以专注开发、训练和微调模型。 ModelArts Standard模型训练支持大规模训练作业,提供高可用的训练环境 支持单机多卡、多机多卡的分布式训练,有效加速训练过程 支持训练作业的故障感知、故障诊断与故障恢复,包含硬件故障与作业卡死故障,并支持进程级恢复、容器级恢复与作业级恢

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了