GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习模型 gpu多线程 互斥 更多内容
  • 华为企业人工智能高级开发者培训

    介绍语言处理相关知识,传统语音模型深度神经网络模型和高级语音模型 自然语言处理 理论和应用 技术自然语言处理的预备知识,关键技术和应用系统 华为AI发展战略与全栈全场景解决方案介绍 介绍华为AI的发展战略和解决方案 ModelArts概览 介绍人工智能、机器学习深度学习以及ModelArts相关知识

    来自:帮助中心

    查看更多 →

  • 约束与限制

    NVIDIA GPU驱动版本 CUDA Toolkit版本 460.106 CUDA 11.2.2 Update 2 及以下 418.126 CUDA 10.1 (10.1.105)及以下 GPU镜像 CUDA和cuDNN都是与GPU相关的技术,用于加速各种计算任务,特别是深度学习任务。在使用NVIDIA

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    h框架和昇腾NPU计算资源。 训练后的模型可用于推理部署,搭建大模型问答助手。 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907) 推理部署、推理性能测试、推理精度测试、推理模型量化 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。 新建超参优化服务:通过训练结果对比,为已创建的训练工程选择一组最优超参组合。 系统还支持打包训练模型,用于

    来自:帮助中心

    查看更多 →

  • 计费说明

    ,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    0版本已经发布,包含开发、构建、训练、部署四个环节,可全面支持企业用户的机器学习深度学习完整使用过程。 如下图所示: 通过Kubeflow 1.0,用户可以使用Jupyter开发模型,然后使用fairing(SDK)等工具构建容器,并创建Kubernetes资源训练其模型模型训练完成后,用户还可以使用KFServ

    来自:帮助中心

    查看更多 →

  • 基本概念

    将模型训练生成的模型进行打包。可以基于模型包生成SHA256校验码、创建模型验证服务、重训练服务、发布在线推理服务。也可以上架至应用市场,支持用户订购后,下载到推理框架中使用。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepsp

    来自:帮助中心

    查看更多 →

  • 执行作业

    ,包括作业输入条件、输出结果、执行环境、合作方信息和模型贡献度等。 图2 展示作业报告 执行纵向作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    0。 python3.6、python2.7、tf2.1-python3.7,表示该模型可同时在CPU或GPU运行。其他Runtime的值,如果后缀带cpu或gpu,表示该模型仅支持在CPU或GPU中运行。 默认使用的Runtime为python2.7。 Spark_MLlib python2

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。 支持特殊声音识别:支持特殊声音识别模型,如娇喘、呻吟、敏感声纹等。 游戏/社交语音 监测游戏APP / 社交APP中的聊天内容以及语音动态,降低业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。

    来自:帮助中心

    查看更多 →

  • ALM-3276800045 端口互斥告警 147456

    ALM-3276800045 端口互斥告警 147456 告警解释 ENTITYTRAP/4/PORTCONFLICT: OID [OID] Some ports on the board and subcard conflict with each 其他. (Index=[INTEGER]

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了