GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    多gpu 深度学习 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • GPU加速型

    。支持GPU虚拟化功能,支持1/2 T4、1/4 T4卡和1/8 T4卡。 请按需选择您所需要的类型和规格。 规格 表3 G6v型弹性 云服务器 的规格 规格名称 vCPU 内存 (GiB) 最大带宽/基准带宽 (Gbps) 最大收发包能力 (万PPS) 网卡队列数 GPU 显存 (GiB)

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 功能介绍

    模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持卡环境下的模型分布式训练,大幅度提升模型训练的速度,满足海量样本数据加速训练的需求。 图17 支持训练过程多个GPU运行指标监控 支持在线

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    当前实例的系统账号不存在,可能会导致实例无法登录。 guestos.network.disabled_multi_queue 网卡队列开启状态检查 网卡队列特性状态未开启,可能对网络性能造成影响。请根据需要将该配置调整为开启状态。 guestos.filesystem.critical_file_exists

    来自:帮助中心

    查看更多 →

  • 什么是云容器引擎

    等异构计算架构,支持可用区(Available Zone,简称AZ)、区域(Region)容灾等技术构建高可用Kubernetes集群。 华为云是全球首批Kubernetes认证服务提供商(Kubernetes Certified Service Provider,K CS P)

    来自:帮助中心

    查看更多 →

  • 负载伸缩概述

    不适用于集群工作负载。 UCS为您提供集群工作负载的自动扩缩能力。UCS负载伸缩能力可基于工作负载的系统指标变动、自定义指标变动或固定的时间周期对工作负载进行自动扩缩,以提升集群工作负载的可用性和稳定性。 UCS负载伸缩的优势 UCS负载伸缩能力的优势主要在于: 集群:多

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 目标集群资源规划

    适用于需要永久化保存的数据。 文件存储卷: CCE支持创建SFS存储卷并挂载到容器的某一路径下,也可以使用底层SFS服务创建的文件存储卷,SFS存储卷适用于写的持久化存储,适用于多种工作负载场景,包括媒体处理、内容管理、大数据分析和分析工作负载程序等场景。 对象存储卷:CC

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • 约束与限制

    NVIDIA GPU驱动版本 CUDA Toolkit版本 460.106 CUDA 11.2.2 Update 2 及以下 418.126 CUDA 10.1 (10.1.105)及以下 GPU镜像 CUDA和cuDNN都是与GPU相关的技术,用于加速各种计算任务,特别是深度学习任务。在使用NVIDIA

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU调度概述 准备GPU资源 创建GPU应用 监控GPU资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU多机多卡训练任务

    /configs/swin/swin_base_patch4_window7_224_22k.yaml 推荐先使用单机单卡运行脚本,待正常运行后再改用卡运行脚本。 卡run.sh中的“VC_WORKER_HOSTS”、“VC_WORKER_NUM”、“VC_TASK_INDEX”、“MA_N

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    /checkpoints/gpt2 图6 模型checkpoint 步骤3 单机卡训练 和单机单卡训练相比, 单机卡训练只需在预训练脚本中设置卡参数相关即可, 其余步骤与单机单卡相同。 当前选择GPU裸金属 服务器 是8卡, 因此需要在预训练脚本中调整如下参数: GPUS_PER_NODE=8

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型ECS的GPU驱动 操作场景 当GPU加速云服务器需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 方案概述

    迁移难度大:AI模型迁移面临算子层、框架层、模型层等技术体系,迁移过程中遇到算子不适配场景难以解决,迁移后模型需要进行准确和性能调优,依赖专家经验进行模型分析与调优。 开发环境复杂:AI开发面临算子层、模型层、应用使能层等技术体系的熟悉,学习难;AI现场开发过程中常会遇到难点问题、新特

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了