GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    多gpu 深度学习 更多内容
  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型E CS GPU驱动 操作场景 当GPU加速 云服务器 需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 方案概述

    迁移难度大:AI模型迁移面临算子层、框架层、模型层等技术体系,迁移过程中遇到算子不适配场景难以解决,迁移后模型需要进行准确和性能调优,依赖专家经验进行模型分析与调优。 开发环境复杂:AI开发面临算子层、模型层、应用使能层等技术体系的熟悉,学习难;AI现场开发过程中常会遇到难点问题、新特

    来自:帮助中心

    查看更多 →

  • 迁移学习

    源数据引用变量名 修改源数据引用变量名,以免和目标数据引用变量名产生冲突。当有份数据需要迁移时,也可作为同类数据之间引用变量名的区分。 源操作流变量名 修改源操作流变量名,以免和目标操作流变量名产生冲突。当有份数据需要迁移时,也可作为同类数据之间操作流变量名之间的区分。 单击图标,运行“绑定迁移前的源数据”代码框内容。

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    用户提供更加便捷、高效的GPU计算服务,有效承载AI模型推理、AI模型训练、音视频加速生产、图形图像加速加速工作负载。 GPU函数主要使用于:仿真、模拟、科学计算、音视频、AI和图像处理等场景下,使用GPU硬件加速,从而提高业务处理效率。 表1 GPU函数规格 卡型 vGPU 显存(GB)

    来自:帮助中心

    查看更多 →

  • 方案概述

    Turbo支持自定义数据淘汰策略,冷数据自动分级到OBS,释放高性能存储空间用于接收新的热数据。 访问冷数据时SFS Turbo从OBS自动加载数据提升访问性能。 5 AI开发平台 、生态兼容 pytorch、mindspore等主流AI应用框架,kubernetes容器引擎、算法开发场景通过文件语义访问共享数据,无需适配开发。

    来自:帮助中心

    查看更多 →

  • IAM 身份中心

    配置用户门户会话的持续时间 用户组管理 创建用户组 用户组添加/移除用户 账号权限管理 创建权限集 账号关联用户/组和权限集 启用和配置访问控制属性 为ABAC创建权限策略 身份源管理 更改身份源 自定义用户门户URL 配置外部身份提供商 因素认证 启用MFA 注册MFA设备 其他 设置委托管理员

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    选择命名空间,如未创建,单击“创建命名空间”。命名空间类型分为“通用计算型”和“GPU加速型”: 通用计算型:支持创建含CPU资源的容器实例及工作负载,适用于通用计算场景。 GPU加速型:支持创建含GPU资源的容器实例及工作负载,适用于深度学习、科学计算、视频处理等场景。 访问密钥 单击“点击上传”,

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 调度概述

    使用Kubernetes默认GPU调度 GPU虚拟化 GPU虚拟化能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。 GPU虚拟化 NPU调度

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    Turbo支持自定义数据淘汰策略,冷数据自动分级到OBS,释放高性能存储空间用于接收新的热数据。 访问冷数据时SFS Turbo从OBS自动加载数据提升访问性能。 5 AI开发平台、生态兼容 pytorch、mindspore等主流AI应用框架,kubernetes容器引擎、算法开发场景通过文件语义访问共享数据,无需适配开发。

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    案例参考: 从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

  • 分布式训练功能介绍

    DistributedDataParallel进行卡训练的优缺点 通信更快:相比于DP,通信速度更快 负载相对均衡:相比于DP,GPU负载相对更均衡 运行速度快:因为通信时间更短,效率更高,能更快速地完成训练作业。 相关章节 创建单机卡的分布式训练(DataParallel):介绍单机卡数据并行分布式训练原理和代码改造点。

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了