AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习进行运动意图预测 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现预测分析

    使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 使用TICS联邦预测进行新数据离线预测

    使用 TICS 联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 配置意图

    一个技能允许创建10个意图,如需更多意图配额,请联系华为云支持人员。 创建意图 在“技能管理”页面,单击技能名称进入“配置意图”页面。 在“配置意图”页面,单击“创建”,弹出“创建意图”对话框。 图1 创建意图 根据实际需要,输入“意图标识”、“意图名称”和“描述”信息。 意图标识:只支持

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 在哪里可以进行课程学习?

    在哪里可以进行课程学习? 开发者认证订单支付完成后,点击“返回我的云市场”,回到“我的开发者认证”个人中心,进行对应开发者认证学习。如图1 图1 进入课程学习-返回我的云市场 您也可以到华为云开发者学堂右上方的“个人中心”,选择“我的开发者认证”,进行对应开发者认证学习。如图2 图2

    来自:帮助中心

    查看更多 →

  • 在哪里可以进行课程学习?

    在哪里可以进行课程学习? 订单支付完成后,点击“返回我的云市场”,回到“我的微认证”个人中心,进行对应微认证学习。如图1。 图1 进入课程学习-返回我的云市场 您也可以到华为云开发者学堂右上方的“个人中心”,选择“我的微认证”,进行对应微认证学习。如图2。 图2 进入课程学习-我的微认证

    来自:帮助中心

    查看更多 →

  • 配置意图

    配置意图 接下来,给“查天气”技能中创建一个“查询国内城市天气”的意图。 您需要在意图中设置一个用户问及对应的扩展问,在对话过程中,当用户的提问问题命中意图中的用户问或扩展问,触发意图,返回答案。 创建意图 在“技能管理”页面,单击技能名称进入“配置意图”页面。 在“配置意图”页

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 应用场景

    个性化服务:基于大模型的智能客服能够学习和适应用户的行为模式和偏好,提供更加个性化的服务。 农业 科学计算大模型包括全球中期天气要素模型和降水模型,可以对未来一段时间的天气和降水进行预测,全球中期天气要素模型和降水模型能够在全球范围内进行预测,不仅仅局限于某个地区。它的分辨率相当

    来自:帮助中心

    查看更多 →

  • 时序预测

    ”。 预测长度:预测的样本数量,默认值“1”。例如当前数据是按小时采集的3000条样本数据,如果想通过模型预测未来1天的样本数据,因为按小时采集,所以为24条数据,那么“预测长度”需要配置为“24”。 预测粒度:保持默认值。 预测类型:取值说明如下所示。本次请选择“时空预测”。

    来自:帮助中心

    查看更多 →

  • 服务预测

    服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout

    来自:帮助中心

    查看更多 →

  • CPI预测

    CPI预测 CPI预测基于蛋白质的一级序列和化合物的2D结构进行靶点匹配,精确的预测化合物-蛋白相互作用。 单击“CPI预测”功能卡片,进入配置页面。 配置靶点文件。 支持3种输入方式,分别是输入氨基酸序列、选择文件、输入PDB ID 输入FASTA格式氨基酸序列,输入框最多支持

    来自:帮助中心

    查看更多 →

  • 实时预测

    实时预测 实时预测通过在计算节点部署在线预测服务的方式,允许用户利用POST请求,在毫秒级时延内获取单个样本的预测结果。 创建实时预测作业 执行实时预测作业 删除实时预测作业 父主题: 联邦预测作业

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 场景五:利用成本分析进行预测

    场景五:利用成本分析进行预测 预测主要是基于客户在华为云上的历史成本和历史用量情况,对未来的成本和用量进行预测,您可以使用预测功能来估计未来时间内可能消耗的成本和用量。 场景示例 客户想要查看未来1年的成本预测数据,方便进行年度预算。由于预测是一种估计值,因此可能与您在每个账期内

    来自:帮助中心

    查看更多 →

  • 执行作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了