AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习加快收敛方法 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • GS

    模型每次迭代时一个batch的大小,尽量设为大于等于训练数据总量的值,加快模型的收敛速度。 feature_size integer [不需设置] 模型特征的长度,用于触发重新训练,模型训练后该参数自动更新。 available boolean [不需设置]标识模型是否收敛。 Is_training boolean

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    模型每次迭代时一个batch的大小,尽量设为大于等于训练数据总量的值,加快模型的收敛速度。 feature_size integer [不需设置] 模型特征的长度,用于触发重新训练,模型训练后该参数自动更新。 available boolean [不需设置]标识模型是否收敛。 Is_training boolean

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    模型每次迭代时一个batch的大小,尽量设为大于等于训练数据总量的值,加快模型的收敛速度。 feature_size integer [不需设置] 模型特征的长度,用于触发重新训练,模型训练后该参数自动更新。 available boolean [不需设置]标识模型是否收敛。 Is_training boolean

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 职业认证考试的学习方法

    职业认证考试的学习方法 华为云职业认证 提供在线学习/导师面授+在线测试+真实环境实践,理论与实践结合的学习模式,帮助您轻松通过认证。 您可以通过如下途径进行职业认证的学习: 进入华为云开发者学堂职业认证,按照页面指引在线学习认证课程。 在HALP处报名认证培训课程,由专业导师进行面授培训。

    来自:帮助中心

    查看更多 →

  • 如何加快迁移速度?

    如何加快迁移速度? 需要提升您的网络速率。您可以参见Iperf的测试网络的方法?章节测试从迁移源端 服务器 到华为云(目的端服务器)的网络性能。如果网络速率小于500kbit/s,您需要排查以下三个方面: 如果源端服务器在数据中心,请您排查源端服务器所在网络到公网的带宽、交换设备、路

    来自:帮助中心

    查看更多 →

  • 添加快照策略

    加快照策略 功能介绍 该接口用于设置快照策略。 调用方法 请参见如何调用API。 URI PUT /v2/{project_id}/clusters/{cluster_id}/snapshot-policies 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 创建告警收敛规则将同维度告警收敛为一条

    创建告警收敛规则将同维度告警收敛为一条 多个维度的告警,通过特定的条件将它们变为一条告警,只需要配置自定义的收敛规则,就可以将重复告警收敛到一起,还有默认的规则帮助用户维护告警。 告警收敛的对象是已经入库的告警,系统启动收敛任务,根据当前告警的状态将告警收敛成已解决的父告警和告警中的父告警,同时会写入告警的数据库中。

    来自:帮助中心

    查看更多 →

  • 添加快速查询

    加快速查询 功能介绍 添加快速查询 调用方法 请参见如何调用API。 URI POST /v1.0/{project_id}/groups/{group_id}/topics/{topic_id}/search-criterias 表1 路径参数 参数 是否必选 参数类型 描述

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减的最小值。计算公式为:最小学习率=学习率*学习率衰减比率。 参数的选择没有标准答案,

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    学习率衰减比率 学习率衰减后的比率,用于控制训练过程中学习率的下降幅度。经过衰减后,学习率的最低值由初始学习率和衰减比率决定。其计算公式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来的最低值。 热身比例 热身比例是指在模型训练过程中逐

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业 等待执行完成,在“历史作

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 迁移学习

    签列修改代码框左侧“# Select data from dataframe”标注下的对应值。 本文以使用“CMF”方法为例。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 迁移操作 > CMF”。 界面新增如图1所示内容。 图1 使用CMF算法迁移数据 参数含义如表5所示。

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于 自然语言处理 (NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。

    来自:帮助中心

    查看更多 →

  • 使用模型

    nsorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了