AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习轨道计算 更多内容
  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 生产管理模块

    制令单上线同时会加载当前制令单到在线制令单,同条线体同个轨道下只允许存在一个在线制令单; SMT 生产阶别的制令单,需选择上线的设备,通过设备加载料站表信息至在线料站表,在线料站表作为 SMT 物料防错基础 制令单下线时,会进行物料下料、FEEDER 资源释放、机台设备状态改为空闲、删除当前线别轨道对应的在线制令单操作;

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 应用场景

    数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlow、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用

    来自:帮助中心

    查看更多 →

  • 方案概述

    将新兴技术融入人才培养与专业建设过程中; 产业项目实训案例不足; 教师缺乏真实产业项目的工程实践经验,不能独立带学生做真实企业项目; 学生学习兴趣不高,动手意愿不足; 学生的学习情况要有数据记录、可评价。 通过本方案实现的业务效果: 青软创新集团数字化人才培养方案以数字化平台为基础创新实训教学模式

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开发的基本流程通常可以归纳为几个

    来自:帮助中心

    查看更多 →

  • 准备工作

    而提高训练效率。 学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率lr-warmup-init开始预热。您可以选择多少比例的训练迭代步使用预热阶段的学习率。不同的训练框架有不同的参数命名,需要结合代码实现设置对应的参数。

    来自:帮助中心

    查看更多 →

  • 与其他云服务的关系

    见《统一身份认证服务文档》。 ModelArts ModelArts是面向AI开发者的一站式开发平台,排序策略使用Modelarts的深度学习计算能力训练得到排序模型。ModelArts的更多信息请参见《ModelArts服务文档》。

    来自:帮助中心

    查看更多 →

  • PERF03-02 选择合适规格的虚拟机和容器节点

    服务器 资源就类似一块块资源拼成的木桶,其最多能承载的业务需求取决于哪一块资源最先达到瓶颈。 不同应用对资源需求不同,例如: 功耗密集型业务(如高性能计算、人工智能、深度学习等场景)主要就是消耗计算维度的容量。 内存密集型业务(如大数据处理、图像/视频处理、游戏开发、数据库等场景)主要消耗内存和存储维度的容量。

    来自:帮助中心

    查看更多 →

  • 计算公式

    计算公式 简介 字面量 操作符 函数 其他 父主题: 分析任务定义

    来自:帮助中心

    查看更多 →

  • 相邻消息计算

    相邻消息计算 算子简介 名称:相邻消息计算 功能说明:基于前一消息和当前消息,按照表达式进行数值计算计算的结果赋值给当前输入消息的属性。 举例:消息中有上报机器的产品总产量,但没有相对上一个上报周期的增量产量。通过相邻消息计算算子,可以用本消息中的产品总量减去上一个消息中的产品

    来自:帮助中心

    查看更多 →

  • 点位计算

    点位计算 业务流程 点位计算业务流程如图1 流程图所示,先进行点位缩放得到真实值,再用真实值进行点位清洗得到上报值。 图1 流程图 点位缩放 对数采数据做规整,减少应用对数据处理和适配的工作量,如从PLC采集上来的原始数据,需要经过计算后才能表达真实含义。具体操作步骤请参见点位缩放。

    来自:帮助中心

    查看更多 →

  • 数学计算函数

    数学计算函数 本文介绍数学计算函数的语法规则,包括参数解释、函数示例等。 函数列表 表1 数学计算函数 函数 描述 round函数 用于对x进行四舍五入。如果n存在,则保留n位小数;如果n不存在,则对x进行四舍五入取整数。 round函数 用于对x进行四舍五入。如果n存在,则保留

    来自:帮助中心

    查看更多 →

  • 与其他云服务的关系

    见《统一身份认证服务文档》。 ModelArts ModelArts是面向AI开发者的一站式开发平台,排序策略使用Modelarts的深度学习计算能力训练得到排序模型。ModelArts的更多信息请参见《ModelArts服务文档》。 父主题: 基础问题

    来自:帮助中心

    查看更多 →

  • 什么是云容器引擎

    性能的云原生应用部署和管理方案。 为什么选择云容器引擎 云容器引擎深度整合高性能的计算(E CS /BMS)、网络(VPC/EIP/ELB)、存储(EVS/OBS/SFS)等服务,并支持GPU、NPU、ARM等异构计算架构,支持多可用区(Available Zone,简称AZ)、多区

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了