AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习的特征是什么 更多内容
  • 特征工程

    特征工程 如何选中全量特征列? 算法工程处理时候必须要先采样吗? 特征处理操作完成后怎么应用于数据集全量数据? 特征工程和算法工程关系? JupyterLab环境异常怎么处理? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程简介 Python和Spark开发平台 JupyterLab开发平台 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 特征管理

    特征管理 特征操作接口 父主题: 应用模型

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    V2025预测,到2025年,企业人工智能利用率将达到86%。新需求,新技术,新产品,成功解决方案和具备对应能力开发工程师、规划设计人员和工程人员,对于这场变革和企业蜕变更是缺一不可关键。基于此,华为云推出了华为企业人工智能高级开发者培训专业服务,旨在培养具有图像处理、语

    来自:帮助中心

    查看更多 →

  • 学习路径和在线课程是什么关系?

    学习路径和在线课程是什么关系? 学习路径是基于学员角色或学习场景等定制循序渐进学习体系、推荐个性化方案课程,帮助您从海量基础在线课程中迅速定位所需课程、开启云上热门技术之旅;在线课程即华为云开发者学堂提供基础培训课程。 父主题: 华为云培训常见问题

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    多样性和一致性是评估LLM生成语言两个重要方面。 多样性指模型生成不同输出之间差异。一致性指相同输入对应不同输出之间一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模型训练或生成过程中加入惩罚项,旨在减少重复生成可能性。通过在计算损失函数(用于优化模型指标)时增加

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    深度诊断E CS 操作场景 ECS支持操作系统深度诊断服务,提供GuestOS内常见问题自诊断能力,您可以通过方便快捷自诊断服务解决操作系统内常见问题。 本文介绍支持深度诊断操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations

    来自:帮助中心

    查看更多 →

  • 应用场景

    场景,但各个子场景运营规则均不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。

    来自:帮助中心

    查看更多 →

  • 全局特征信息文件

    全局特征信息文件 在特征工程、在线模块,近线模块时都会用到该全局特征信息文件。当上传数据中特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features

    来自:帮助中心

    查看更多 →

  • 特征工程简介

    特征工程处理数据集计算平台。 创建人 发布服务用户名。 创建时间 发布服务时间。 活动时间 最新执行特征工程任务时间。 简介 特征工程服务简介。 查看特征工程服务详情,包括特征工程任务列表信息。 创建特征工程任务。 删除特征工程服务。 父主题: 特征工程

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    如,图像分类、物体检测等等。不同项目对数据要求,使用AI开发手段也是不一样。 准备数据 数据准备主要是指收集和预处理数据过程。 按照确定分析目的,有目的性收集、整合相关数据,数据准备是AI开发一个基础。此时最重要是保证获取数据真实可靠性。而事实上,不能一次性将

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    特征工程描述信息。 最多不超过500个字符。 开发模式 特征工程开发环境: Jupyterlab交互式开发 基于JupyterLab特征工程开发环境,具有良好实时交互性,提供通用特征工程和数据分析图形界面操作,以及用户自定义编码能力。适用于数据科学家,以及自定义算法场景。

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    hm”下方“算法工程”,弹出“新建”对话框。 输入“名称”,示例:code-123,单击“确定”。 “code-123”算法工程创建完成,在界面左侧代码目录,可以看到新增“code-123”目录及其相关主文件、子目录等。 不同算法工程,均会有与算法工程同名目录,且同

    来自:帮助中心

    查看更多 →

  • 查询全局特征配置

    String 全局特征文件OBS路径。 响应消息 响应参数请参见表3。 表3 响应参数说明 参数名称 参数类型 说明 is_success Boolean 请求是否成功。 global_features Object 全局特征表4。 error_code String 请求失败时错误码,请求成功时无此字段。

    来自:帮助中心

    查看更多 →

  • 查询全局特征配置

    String 全局特征文件OBS路径。 响应消息 响应参数请参见表3。 表3 响应参数说明 参数名称 参数类型 说明 is_success Boolean 请求是否成功。 global_features Object 全局特征表4。 error_code String 请求失败时错误码,请求成功时无此字段。

    来自:帮助中心

    查看更多 →

  • APP特征信息无效

    APP特征信息无效 整改通知: 您填写APP公钥或MD5值为无效信息。 可能原因: 出现此情况,可能您填写APP公钥或MD5值为无效字段。 整改建议: 请参考变更备案,填写新APP公钥或MD5值,确保备案APP特征信息与实际信息保持一致。 父主题: APP信息

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 特征工程和算法工程的关系?

    特征工程和算法工程关系? 用户创建特征工程时候,进入特征工程,可以看到系统自动创建特征工程同名算法工程。支持在同一个特征工程中创建多个算法工程,操作如下所示: 在JupyterLab环境编辑界面,单击界面左上角“File > New Launcher”,界面右侧新增“

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集特征数据不够理想,而此数据集数据类别和一份理想数据集部分重合或者相差不大时候,可以使用特征迁移功能,将理想数据集特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计是以任务形式分派学员学习数据 自学记录统计是学员在知识库进行自学学习数据 统计数据统计是具体培训资源(实操作业、考试等)学员学习数据 父主题: 培训管理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了