AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习超采样抗锯齿 更多内容
  • 数据采样

    数据采样 如果数据量太大,造成特征操作等待的时间长,用户可以通过采样功能减少特征处理的数据量,提升特征处理的速度。 数据采样提供如下两种方式,请根据实际情况进行选择: 随机采样:按照比例进行样本数据的随机采样。 分层采样:如果一个特征或多个特征组合样本值的类型多样,为保证采样数据

    来自:帮助中心

    查看更多 →

  • 数据采样

    仅支持对刚导入的数据进行数据采样,不支持对已执行过特征操作的数据进行数据采样。 数据采样操作步骤如下。 在特征工程首页,单击特征工程所在行,对应“操作”列的图标,进入特征操作界面。 单击,弹出“采样”对话框。 配置采样参数如表1所示。 表1 采样参数设置 参数名称 参数描述 采样方法 数据样本采样的方法。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 采样方式介绍

    蒙特卡洛采样 拉丁立方采样 拉丁立方采样的目的是用较少的采样次数,来达到与多次蒙特卡洛采样相同的结果,并且涵盖更全面的边界点。 如下图所示,同样对于µ=0,δ=1的正态分布,可以利用更少的采样点得到相同的分布,并且不会产生明显的聚集现象,边界值也能更容易获取到。 图2 拉丁立方采样

    来自:帮助中心

    查看更多 →

  • 采样方式有几种?

    。 对于同样的采样点数,拉丁立方采样的结果会更加分散,并且边界值会更多。 图4 蒙特卡洛采样结果 图5 拉丁立方采样结果 对于离散型参数,联合概率分布采样会根据给定的取值列表进行随机采样。 图6 离散型参数-联合概率分布采样结果 对于连续型参数,联合概率分布采样会根据参数分布和相关系数进行采样。

    来自:帮助中心

    查看更多 →

  • 产品术语

    模型训练输出的预测值,对应数据集的一个特征列。例如鸢尾花分类建模数据集提供了五列数据:花瓣的长度和宽度、花萼的长度和宽度、鸢尾花种类。其中,鸢尾花种类就是标签列。 C 参 模型外部的参数,必须用户手动配置和调整,可用于帮助估算模型参数值。 M 模型包 将模型训练生成的模型进行打包。可以基于模型包生成SHA2

    来自:帮助中心

    查看更多 →

  • 方案概述

    模型智能布置:学习模型的色系、大小、风格,根据空间算法智能选择适配且搭配美观的模型组合 图5 模型智能布置 核心技术2:自研云渲染技术,实现高画质、交互式的实时渲染效果 云渲染技术 强大AI算力,使能分场景:利用AI算力分技术,可满足在线推理、Pipleline并行、算子深度优化等核

    来自:帮助中心

    查看更多 →

  • 自动模型优化介绍

    Estimator,是一种利用高斯混合模型来学习参模型的算法。在每次试验中,对于每个参,TPE为与最佳目标值相关的参维护一个高斯混合模型l(x),为剩余的参维护另一个高斯混合模型g(x),选择l(x)/g(x)最大化时对应的参作为下一组搜索值。 表2 TPE算法的参数说明

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 准备工作

    定位前的排查当前主要包含如下几个方面: 训练参数。常见的参如下图所示: 图1 训练参数 模型的参通常可能调整的主要有学习率、batch size、并行切分策略、学习率warm-up、模型参数、FA配置等。用户在进行NPU精度和GPU精度比对前,需要保证两边的配置一致。 表1 参说明 参 说明 学习率 影响

    来自:帮助中心

    查看更多 →

  • 使用盘古预置NLP大模型进行文本对话

    场景描述 此示例演示了如何使用盘古预置NLP大模型进行对话问答,包含两种方式:使用“能力调测”功能和调用API接口。 您将学习如何使用“能力调测”功能调试模型参数、如何调用盘古NLP大模型API以实现智能化对话问答能力。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署

    来自:帮助中心

    查看更多 →

  • APM指标数据采样策略是什么?

    APM指标数据采样策略是什么? 在使用APM服务过程中用户开启APM数据采集开关后,APM仅采集应用性能指标及调用链相关数据,不涉及个人隐私数据,详细内容请参见数据采集。 APM可以通过非侵入方式采集APM 探针提供的应用数据、基础资源数据、用户体验数据等多项指标。 指标数据周期性完整采集,默认采集周期为1分钟。

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 功能介绍

    全流程可视化自主训练,用户可选择网络结构、数据集利用云端算力进行自动学习,也可以利用notebook进行算法开发;支持基于预训练模型进行模型的自主训练与迭代优化,提高模型训练效率和精度。 图12 新建工程 支持模型参数配置,包括:backbone、实时样本增强(随机翻转、裁切、对

    来自:帮助中心

    查看更多 →

  • 最新动态

    帽检测技能。 人脸检测技能 面向智慧商的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了