AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习conv 1 更多内容
  • conv

    conv conv函数用于进制转换,将from_base进制下的num转化为to_base进制下面的数。 命令格式 conv(BIGINT num, INT from_base, INT to_base) 参数说明 表1 参数说明 参数 是否必选 参数类型 说明 num 是 DO

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    Deepspeed-ZeRO-0 cutoff_len=8192 Deepspeed-ZeRO-0 1 小于7B cutoff_len=4096 Deepspeed-ZeRO-1 cutoff_len=8192 Deepspeed-ZeRO-1 2 7B至13B cutoff_len=4096 Deepspeed-ZeRO-2

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    诊断”。 深度诊断功能依赖UniAgent,如果提示未安装UniAgent或者安装失败,请参考为E CS 安装UniAgent进行安装,否则无法发送命令。 图1 深度诊断 勾选“同意安装插件并采集数据”后,单击“确定”。 诊断结果及说明,请参见深度诊断结论。 在诊断结果的“诊断报告”页签查看诊断详情。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 迁移学习

    进入迁移数据JupyterLab环境编辑界面,运行“Import sdk”代码框。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 特征准备 > 绑定源数据”。界面新增“绑定迁移前的源数据”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明 数据集 迁移前源数据对应的数据集。 数据集实例 迁移前源数据的数据集实例。

    来自:帮助中心

    查看更多 →

  • 学习项目

    查看、学习 操作路径:培训-学习-学习项目-更多-可见范围 图17 可见范围1 图18 可见范围2 推送内容 通过推送消息,提醒学员学习 操作路径:培训-学习-学习项目-更多-推送内容 图19 推送内容1 图20 推送内容2 分享 管理员可通过链接/二维码的方式分享该学习项目,学员通过单击链接或识别二维码进行学习

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 创建多机多卡的分布式训练(DistributedDataParallel)

    super().__init__() self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(64)

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    学习任务功能 我的教学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入教学任务页面,单击【教学课程】菜单。 进入教学课程页面,日程形式展示我的教学课程信息。 图1 我的教学课程 通过课程名称搜索和时间段选择可进行教学课程的筛选检索。 单击课程卡片展示该教学课程的授课

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    应用进程控制”,进入“应用进程控制”界面。 选择“白名单策略”页签。 单击策略状态为“学习完成,未生效”的策略名称,进入“策略详情”界面。 选择“进程文件”页签。 单击待确认进程数量,查看待确认进程。 图1 查看待确认进程 根据进程名称和进程文件路径等信息,确认应用进程是否可信。 在已确认进程所在行的操作列,单击“标记”。

    来自:帮助中心

    查看更多 →

  • 如何在ModelArts训练作业中加载部分训练好的参数?

    Variables names patterns to exclude for trainable variables. Such as: conv1,conv2. --trainable_include_patterns: Variables names patterns to include

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    在“模型管理”页面中,单击“新建”,弹出提示框,选择“轻量级深度学习”或“重量级深度学习”模型,单击“下一步”。 图1 新建模型 轻量级深度学习:增加扩展问并使用该模型进行训练从而提高问答精准度,扩展问越多,效果提示越明显。 高级版、专业版、旗舰版机器人支持轻量级深度学习。 重量级深度学习:适用于对问答精准度要求很高的场景,扩展问越多,效果提升越明显。

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    文本分类:识别一段文本的类别。 使用自动学习功能构建模型的端到端示例,请参见“快速入门>使用自动学习构建模型”。 自动学习流程介绍 使用ModelArts自动学习开发AI模型无需编写代码,您只需上传数据、创建项目、完成数据标注、发布训练、然后将训练的模型部署上线。具体流程请参见图1。新版自动学习中,该流程可

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自定义算法实现手写数字识别

    __init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25)

    来自:帮助中心

    查看更多 →

  • 数学函数概览

    进制转换,将from_base进制下的num转化为to_base进制下面的数。例如:将5从十进制转换为四进制,conv(5,10,4)=11。 cos cos(DOUBLE a) DOUBLE 返回给定角度a的余弦值。 cot1 cot1(DOUBLE a) DOUBLE或DECIMAL类型 计算number的余切函数,输入为弧度值。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    优特征变换和基于信息熵上限近似模型的贝叶斯优化自动调参,从企业关系型(结构化)数据中,自动学习数据特征和规律,智能寻优特征&ML模型及参数,准确性甚至达到专家开发者的调优水平 图1 自动学习流程 父主题: Standard功能介绍

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了