AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习cnn代码 更多内容
  • 准备代码

    准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6

    来自:帮助中心

    查看更多 →

  • 准备代码

    软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 模型软件包结构说明

    来自:帮助中心

    查看更多 →

  • 准备代码

    # 推理代码包 |──llm_tools # 推理工具 修改代码 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后。在上传代码前,需要对解压后的训练脚本代码进行修改。具体文件为:ll

    来自:帮助中心

    查看更多 →

  • 准备代码

    软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限

    来自:帮助中心

    查看更多 →

  • 准备代码

    准备代码 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码

    来自:帮助中心

    查看更多 →

  • 准备代码

    包含了本教程中使用到的模型训练代码代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 请联系您所在企业的华为方技术支持下载获取。 模型软件包结构说明 AscendCloud-6.3.909代码包中AscendCloud-LLM代码包结构介绍如下,训练脚本以分类的方式集中在scripts文件夹中:

    来自:帮助中心

    查看更多 →

  • 准备代码

    zip 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至SFS Turbo后,目录结构如下。 /mnt/sfs_turbo/ |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |──

    来自:帮助中心

    查看更多 →

  • 准备代码

    zip 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至SFS Turbo后,目录结构如下。 /mnt/sfs_turbo/ |──llm_train # 解压代码包后自动生成的代码目录,无需用户创建 |──

    来自:帮助中心

    查看更多 →

  • 代码签名

    代码签名 为了保障用户的代码安全,防止代码文件损坏或被篡改导致代码不一致问题,保证被执行的函数代码为正确版本,当函数创建或修改代码时,FunctionGraph对用户的函数代码签名加密,为其生成代码签名,并存储在函数元信息内。 FunctionGraph在函数执行时,为当前执行的

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    在TFJob中指定GPU资源。 创建tf-gpu.yaml文件,示例如下: 该示例的主要功能是基于Tensorflow的分布式架构,利用卷积神经网络(CNN)中的ResNet50模型对随机生成的图像进行训练,每次训练32张图像(batch_size),共训练100次(step),记录每次训练过程中的性能(image/sec)。

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 故障代码

    故障代码 【功能说明】 用于维护资产设备的故障信息 【操作说明】 新增:单击“新增”按钮 -> 输入故障代码信息 -> 单击“保存”按钮; 图1 输入故障代码信息 修改:选择故障代码 -> 单击“修改”按钮 -> 修改故障代码信息 -> 单击“保存”按钮; 图2 修改故障代码信息

    来自:帮助中心

    查看更多 →

  • 代码调试

    代码调试 CodeArts IDE Online 支持C/C++工程调试,调试之前需满足以下条件: 编译时,已在“.theia/tasks.json”中需要加上调试参数“-g”,如:“g++ -g -o hello helloworld.cpp”,默认已经添加,如没有,需要手动添加。

    来自:帮助中心

    查看更多 →

  • 代码解析

    代码解析 Demo代码如下,具体实现的是模拟电机设备上报数据,SDK获取上报数据做进一步分析处理。如果遇到状态为error,则调用事先在产品模型定义好的设备命令。对于未指定MOTOR_PRODUCT_ID的产品上报的数据将继续上报给云端。 #include "edge.h" #include

    来自:帮助中心

    查看更多 →

  • 代码解析

    代码解析 项目结构如下 ApiController:提供被北向应用NA调用的接口。 Application:主启动类 AuthFilter:鉴权过滤器。 ConfigController:被云端调用进行配置处理。 ConfigService:配置管理服务 。 ItIntegrat

    来自:帮助中心

    查看更多 →

  • 代码生成

    代码生成 简介 构造函数生成 Override/implement方法 组织imports 生成getters和setters 生成hashCode()和equals() 测试 生成toString() 父主题: Java

    来自:帮助中心

    查看更多 →

  • 测试代码

    测试代码 Python扩展支持使用unittest和pytest框架进行测试。CodeArts可以帮助您配置框架集成,并提供专用的“测试”视图,让您能够方便地识别和运行测试。 以下是一个如何创建和运行一个unittest测试的示例。 创建一个测试对象,也就是新建一个名为 “inc_dec

    来自:帮助中心

    查看更多 →

  • 代码重构

    代码重构 简介 内联变量 引入变量 变量重命名 父主题: 代码编辑

    来自:帮助中心

    查看更多 →

  • Code代码

    Code代码 Code代码也被称为函数连接器,仅包含“运行动作”一个执行动作。 连接参数 Code代码连接器无需认证,无连接参数。 运行动作 输入参数 用户配置运行动作执行动作,相关参数说明如表1所示。 表1 运行动作属性配置输入参数说明 参数 必须 说明 函数名称 是 选择下拉

    来自:帮助中心

    查看更多 →

  • 准备代码

    准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了