AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 正负样本比例 更多内容
  • 蛇行(Snake Driving)检测

    出现横向控制效果不佳导致的长时间车辆横向振荡。 蛇行检测的目的是判断车辆是否出现横向振荡,利用车辆的横向加速度的正负变化来判断蛇行是否发生。 正值大于和负值小于的比例都大于该时间段的10%时,则判断此时间段发生蛇行。 在及少数的连续S型弯道情况下,可能会出现假阳性结果,这会在评测报告中进行体现。

    来自:帮助中心

    查看更多 →

  • 查询单个样本详情

    查询单个样本详情 根据样本ID查询数据集中指定样本的详细信息。 dataset.get_sample_info(sample_id) 示例代码 根据ID查询数据集中样本的详细信息 from modelarts.session import Session from modelarts

    来自:帮助中心

    查看更多 →

  • 执行样本对齐

    String 样本对齐算法。 OPRF, SQL_JOIN; datasets 否 Map<String,String> 样本对齐数据集 align_ids 否 Map<String,String> 样本对齐字段ID集合 agents 否 Array of strings 样本对齐agentId

    来自:帮助中心

    查看更多 →

  • 查询单个样本信息

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

    来自:帮助中心

    查看更多 →

  • 批量更新样本标签

    批量更新样本标签 功能介绍 批量更新样本标签,包括添加、修改和删除样本标签。当请求体中单个样本的“labels”参数传空列表时,表示删除该样本的标签。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。

    来自:帮助中心

    查看更多 →

  • 数据采样

    数据采样提供如下两种方式,请根据实际情况进行选择: 随机采样:按照比例进行样本数据的随机采样。 分层采样:如果一个特征或多个特征组合样本值的类型多样,为保证采样数据的多样性,可以对不同类型的数据分别设置采样比例。 数据采样有如下两个入口: 在JupyterLab环境编辑界面,单击界面右上角的图标,选择“数据处理

    来自:帮助中心

    查看更多 →

  • 产品概述

    设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化

    来自:帮助中心

    查看更多 →

  • 时序预测

    时间列:参考“目标列”的操作,将“时间列”设置为数据集中的时间列,本次数据集的时间列为“time”。 预测长度:预测的样本数量,默认值“1”。例如当前数据是按小时采集的3000条样本数据,如果想通过模型预测未来1天的样本数据,因为按小时采集,所以为24条数据,那么“预测长度”需要配置为“24”。 预测粒度:保持默认值。

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    包含“高级版”功能,以及以下功能。 多轮技能管理 知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在 智能问答机器人 列表中,选择“操作”列的“规格修改”。

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。 表3 LoRA参数配置说明 参数英文名 参数中文名 参数说明 lora_rank

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 概述

    同特征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型。 在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch Size),指一次训练所抓取的数据样本数量,影响训练速度及模型优化效果。

    来自:帮助中心

    查看更多 →

  • 提交样本量或者时域分析任务

    提交样本量或者时域分析任务 功能介绍 管理员在数据集详情页面提交样本量或者时域探索任务。 URI URI格式 PUT /softcomai/datalake/v1.0/datasets/metadata 参数说明 无。 请求 请求样例 PUT https://telcloud.huawei

    来自:帮助中心

    查看更多 →

  • 查询单个智能标注样本的信息

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

    来自:帮助中心

    查看更多 →

  • 批量更新团队标注样本的标签

    更新的样本列表。 表3 SampleLabels 参数 是否必选 参数类型 描述 labels 否 Array of SampleLabel objects 样本标签列表,为空表示删除样本的所有标签。 metadata 否 SampleMetadata object 样本metadata属性键值对。

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了