AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 预测模型 更多内容
  • 方案概述

    函数工作流 :用于实现调用销量预测服务的业务逻辑,完成模型的自动部署。 销量预测服务:提供分时销量预测服务,可灵活调整预测时间点,根据历史销量、商品属性、促销活动等基础信息训练得到准确的预测模型。 方案优势 行业化建模经验 内置社区团购类销量预测行业化建模经验,有效提高模型预测准确率。 降本增效

    来自:帮助中心

    查看更多 →

  • 应用场景

    客户需求;个性化服务:基于大模型的智能客服能够学习和适应用户的行为模式和偏好,提供更加个性化的服务。 农业 科学计算大模型包括全球中期天气要素模型和降水模型,可以对未来一段时间的天气和降水进行预测,全球中期天气要素模型和降水模型能够在全球范围内进行预测,不仅仅局限于某个地区。它的

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    在服务详情页,单击选择“预测”页签。 图4 上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型预测图片有一定

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 基本概念

    盘古药物分子大模型 盘古药物分子大模型是基于华为与中科院上海药物所共同研发、专门面向药物研发领域推出的预训练大模型,旨在帮助医药公司开启AI辅助药物研发的新模式。盘古药物分子大模型学习了17亿个药物分子的化学结构,模型参数上亿,是目前最大的小分子药物模型。华为盘古药物分子大模型在分子生

    来自:帮助中心

    查看更多 →

  • 关键概念

    盘古药物分子大模型 盘古药物分子大模型是基于华为与中科院上海药物所共同研发、专门面向药物研发领域推出的预训练大模型,旨在帮助医药公司开启AI辅助药物研发的新模式。盘古药物分子大模型学习了17亿个药物分子的化学结构,模型参数上亿,是目前最大的小分子药物模型。华为盘古药物分子大模型在分子生

    来自:帮助中心

    查看更多 →

  • 如何判断盘古大模型训练状态是否正常

    如果您发现Loss曲线出现了以下几种情况,可能意味着模型训练状态不正常: Loss曲线上升:Loss上升的原因可能是由于数据质量差,或者学习率设置得过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或者减小学习率的方式来解决。 图3 异常的Loss曲线:上升

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 预测性维护功能

    预测性维护功能 设备概览操作 登录数字孪生管理控制台。 单击左半侧目录“设备概览统计”。 图1 设备概览统计 预测设备台账操作 登录数字孪生管理控制台。 单击左半侧目录“预测设备台账”。 单击页面右侧页面内容左上方“添加”,进入“添加预测设备台账”页面。 图2 添加预测设备台账1

    来自:帮助中心

    查看更多 →

  • 查看预测外呼

    查看预测外呼 前提条件 管理员已为指定座席人员建立预测外呼任务,并启动任务。 座席处于空闲态,预测外呼配有外呼数据且已经启动。 操作步骤 外呼业务代表进入云联络中心,输入账号、密码登录。 选择“外呼任务 > 座席外呼任务”。 图1 外呼任务 点击外呼结果,可查看外呼结果。 表1 预测外呼结果提示元素说明

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于tra

    来自:帮助中心

    查看更多 →

  • 通过异常检测上报告警

    黄色部分 超过阈值线3,则数据异常。 图1 固定阈值 动态阈值会通过训练历史数据,实现对数据特征的学习,构建数据的模型。并利用模型预测数据的趋势走向。如图2黄色部分,实际值和预测值相差过大,认为异常。 图2 动态阈值 异常检测的能力是基于指标仓库,MPPDB数据库及异常检测服务

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    FEATURE_SELECTION.特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate String 纵向联邦算法学习率,最大长度16 label_dataset String 标签数据集,最大长度100

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    FEATURE_SELECTION.特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否 String 标签数据集,最大长度100

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard一键完成商超商品识别模型部署

    步骤四:预测结果 在线服务部署完成后,单击“预测”页签。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 本案例中使用的订阅模型可以识别81类常见超市商品,模型预测图片有一定范围和要求,不满足条件的图片会影响预测结果的准确性。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    遥感解译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了