AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 稀疏表示 更多内容
  • 产品优势

    多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型能够捕捉语言中的细微差别和复杂模式,无论是在词汇使用、语法结构,还是语义理解上,都能达到令人满意的精度。此外,模型具备自我学习和不断进化的能力,随

    来自:帮助中心

    查看更多 →

  • 标准策略、极速策略和深度策略有哪些区别?

    标准策略、极速策略和深度策略有哪些区别? 漏洞管理服务提供支持以下3种网站扫描模式: “极速策略”:扫描的网站URL数量有限且漏洞管理服务会开启耗时较短的扫描插件进行扫描。 “深度策略”:扫描的网站URL数量不限且漏洞管理服务会开启所有的扫描插件进行耗时较长的遍历扫描。 “标准策

    来自:帮助中心

    查看更多 →

  • IoTA.01010036 属性引用深度超过配额限制

    IoTA.01010036 属性引用深度超过配额限制 错误码描述 属性引用深度超过配额限制。 可能原因 资产属性作为其他的分析任务的输入参数,此时该资产属性引用深度为1,举例:模型A中有属性a,而模型B的分析任务以a为输入参数,则a的引用深度为1,深度限制最大为10。 处理建议 系统

    来自:帮助中心

    查看更多 →

  • 如何获取Azure对象存储深度采集所需凭证?

    如何获取Azure对象存储深度采集所需凭证? 在对Azure云平台对象存储资源进行深度采集时,需要使用“存储账户”和“密钥”作为采集凭证,本节介绍获取Azure“存储账户”和“密钥”的方法。 登录 Azure 门户中转到存储账户。 在左侧导航栏选择“安全性和网络 > 访问密钥” ,即可看到“存储账户名称”和“密钥”。

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • ClickHouse索引设计

    如所有的分析,都需要指定业务的id,则可以将业务id字段作为主键的第一个字段顺序。 根据业务场景合理设计稀疏索引粒度 ClickHouse的主键索引采用的是稀疏索引存储,稀疏索引的默认采样粒度是8192行,即每8192行取一条记录在索引文件中,实践建议: 索引粒度越小,对于小范围的查询更有效,避免查询资源的浪费;

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的

    来自:帮助中心

    查看更多 →

  • 功能介绍

    集成主流深度学习框架,包括PyTorch,TensorFlow,Jittor,PaddlePaddle等,内置经典网络结构并支持用户自定义上传网络,同时,针对遥感影像多尺度、多通道、多载荷、多语义等特征,内置遥感解译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数

    来自:帮助中心

    查看更多 →

  • IoTA.01010204 资产树深度超过配额限制

    IoTA.01010204 资产树深度超过配额限制 错误码描述 资产树深度超过配额限制。 可能原因 每棵资产树深度最大不超过10层。 处理建议 请检查资产树的深度是否超过10层,若超出限制,请调整资产树的建模关系保证总深度不超过10层。 父主题: 资产建模相关错误码

    来自:帮助中心

    查看更多 →

  • 主机深度采集成功,部分采集规格信息缺失

    主机深度采集成功,部分采集规格信息缺失 问题描述 进行主机深度采集后,在资源详情中查看采集的基本信息和规格信息,发现存在部分信息缺失的情况。 问题分析 出现该问题,可能是在安装Edge主机上的Linux采集脚本时,UNIX换行符格式不正确。正常情况下,Linux系统使用“LF”作

    来自:帮助中心

    查看更多 →

  • HBase应用场景

    画像通常用一些标签来刻画自然人/物的特征,而每一个自然人/物所拥有的标签集合是不确定的,数据更新非常频繁,这类数据被广泛应用于市场决策、推荐以及广告系统中。 优势 稀疏矩阵 HBase的稀疏矩阵模型,天然适合非结构化数据的存储,数据表无需预先定义schema,行与行之间不需要严格的列定义。 支持任意更新 支持行的任意

    来自:帮助中心

    查看更多 →

  • 配置智能调优

    拓扑关系,自动识别稀疏部署的AP区域(一般为AP间布放距离较远或AP间障碍物遮挡较多,多隔断等场景导致信号衰减较大的区域)。智能推荐AP 80M大频宽配置,进一步提升用户带宽体验。 操作指导: 在智能调优首页,单击优化项中“展开”按钮,选择“大带宽AP”进入稀疏部署AP页面。勾选

    来自:帮助中心

    查看更多 →

  • HBase应用开发简介

    HBase中的表具有如下特点: 大:一个表可以有上亿行,上百万列。 面向列:面向列(族)的存储和权限控制,列(族)独立检索。 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。 接口类型简介 由于HBase本身是由java语言开发出来的,且java语言具有简洁通用易懂的特性,

    来自:帮助中心

    查看更多 →

  • 概要

    型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开发的基本流程通

    来自:帮助中心

    查看更多 →

  • 最新动态

    人脸检测技能 面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。 车牌识别技能

    来自:帮助中心

    查看更多 →

  • 天筹求解器服务 OptVerse

    程组的手段,具有求解稳定性好、精度高的优点。 线性迭代法:基于Krylov子空间的迭代方法是一种重要的求解线性方程组的手段,尤其是对于大型稀疏矩阵的方程组,迭代法是求解线性方程组的优先选择。 预处理子:预处理技术试图改变系数矩阵的谱性质,将一个困难问题转化为另一个易于迭代求解的同解线性方程组。

    来自:帮助中心

    查看更多 →

  • 执行横向联邦学习作业

    执行横向联邦学习作业 功能介绍 执行横向联邦学习作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id}/execute 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 获取横向联邦学习作业详情

    获取横向联邦学习作业详情 功能介绍 获取横向联邦学习作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 在哪里可以进行课程学习?

    在哪里可以进行课程学习? 订单支付完成后,点击“返回我的云市场”,回到“我的微认证”个人中心,进行对应微认证学习。如图1。 图1 进入课程学习-返回我的云市场 您也可以到华为云开发者学堂右上方的“个人中心”,选择“我的微认证”,进行对应微认证学习。如图2。 图2 进入课程学习-我的微认证

    来自:帮助中心

    查看更多 →

  • 自动学习/Workflow计费项

    存储费用:自动学习作业的数据通过 对象存储服务 (OBS)上传或导出,存储计费按照OBS的计费规则。 综上,运行自动学习作业的费用 = 计算资源费用(2.43 元) + 存储费用 示例:使用专属资源池运行自动学习作业。计费项:标准存储费用 假设用户于2023年4月1日创建了自动学习的图像分

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了