华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 离散的权重 更多内容
  • 创建智能场景

    属性对。 表32 AttrPair 参数 是否必选 参数类型 描述 party_a 否 String 被推荐对象属性名。 party_b 否 String 被推荐对象属性名。 表33 Deduplication 参数 是否必选 参数类型 描述 attributes 否 Array

    来自:帮助中心

    查看更多 →

  • 获取授权重定向URL

    String 消息体类型(格式),默认取值为“application/json;charset=utf8”。 X-Auth-Token 是 String 调用接口认证方式分为Token和AK/SK两种,如果您使用Token方式,此参数为必填,请填写Token值。Token获取方式,请参考获取用户Token。

    来自:帮助中心

    查看更多 →

  • SFT全参微调权重转换

    --model-type:模型类型。 --loader:权重转换要加载检查点模型名称。 --tensor-model-parallel-size:张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:流水线并行数,需要与训练脚本中PP值配置一样。 --saver:检查模型保存名称。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    介绍神经网络定义与发展,深度学习训练法则,神经网络类型以及深度学习应用 图像识别、 语音识别 机器翻译 编程实验 与图像识别、语言识别、机器翻译编程相关实验操作 本培训为线下面授形式,培训标准时长为6天,每班人数不超过20人。 验收标准 按照培训服务申请标准进行验收,客户以官网

    来自:帮助中心

    查看更多 →

  • SFT全参微调权重转换

    --loader:权重转换要加载检查点模型名称。 --tensor-model-parallel-size:${TP} 张量并行数,需要与训练脚本中配置一样。 --pipeline-model-parallel-size:${PP} 流水线并行数,需要与训练脚本中配置一样。 --saver:检查模型保存名称。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    确定发布 调整阈值 训练好模型可以通过调整阈值,影响机器人直接回答准确率。阈值越高,机器人越严谨,对用户问泛化能力越弱,识别准确率越高;阈值越低,机器人越开放,对用户问泛化能力越强,识别准确率越低。 针对历史版本模型,可以根据当前模型调节直接返回答案阈值。 在“模型管理”

    来自:帮助中心

    查看更多 →

  • 创建横向评估型作业

    模型初始权重,样例请参考准备本地横向联邦数据资源中步骤3。 迭代次数 即epoch,数据将会被执行次数。评估型作业迭代次数固定为1。 训练轮数 训练轮数,每一轮训练结束都会对各方训练出权重进行一次安全聚合,评估型作业轮数固定为1。 重试 开关开启后,执行失败作业会根据

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    格”,通过训练部署模型,实现产品质检。 物体检测 物体检测项目,是检测图片中物体类别与位置。需要添加图片,用合适框标注物体作为训练集,进行训练输出模型。适用于一张图片中要识别多个物体或者物体计数等。可应用于园区人员穿戴规范检测和物品摆放无人巡检。 预测分析 预测分析项目

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景功能介绍。 乳腺癌数据集:基于医学图像中提取若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 产品术语

    模型训练输出预测值,对应数据集一个特征列。例如鸢尾花分类建模数据集提供了五列数据:花瓣长度和宽度、花萼长度和宽度、鸢尾花种类。其中,鸢尾花种类就是标签列。 C 超参 模型外部参数,必须用户手动配置和调整,可用于帮助估算模型参数值。 M 模型包 将模型训练生成模型进行打包

    来自:帮助中心

    查看更多 →

  • 概述

    多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出模型权重在某一数据集上预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • SFT全参微调权重转换

    HuggingFace权重转换操作 下载baichuan2-13b预训练权重和词表文件,并上传到/home/ma-user/ws/tokenizers/baichuan2-13b-hf目录下。具体下载地址请参见表1。如果已下载,忽略此步骤。 创建权重转换后输出目录/home/m

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    指定每个设备训练批次大小 gradient_accumulation_steps 8 指定梯度累积步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次过程。可根据自己要求适配

    来自:帮助中心

    查看更多 →

  • 根据表面离散点坐标集生成可渲染的文件内容

    X-Auth-Token 是 String 用户Token。Token认证就是在调用API时候将Token加到请求消息头,从而通过身份认证,获得操作API权限, 获取Token 接口响应消息头中X-Subject-Token值即为Token。 最小长度:1 最大长度:32768 表3 请求Body参数

    来自:帮助中心

    查看更多 →

  • 如何获得微认证的学习材料?

    如何获得微认证学习材料? 华为云开发者学堂提供在线视频课程,对应课程实验手册可以在微认证详情页面上获取。 父主题: 微认证课程学习常见问题

    来自:帮助中心

    查看更多 →

  • 场景介绍

    学习到使用者偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键组成部分。它主要任务是根据给定输入和反馈来预测奖励值,从而指导学习算法方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 离散小时调度与作业最近依赖调度逻辑

    作业A在3点实例,依赖作业B在0点实例;作业A在6点实例,依赖作业B在8点实例;作业A在8点实例,依赖作业B在 16点实例。 规则二:自然天内,上下游任务数量不一致,下游任务运行当天生成周期实例,将会根据就近原则挂载依赖,依赖距离自己定时运行时间最近上游实例。 先向

    来自:帮助中心

    查看更多 →

  • 创建自监督微调训练任务

    完成全部训练数据集训练次数。 学习率 0.0001 0~1 学习率用于控制每个训练步数(step)参数更新幅度。需要选择一个合适学习,因为学习率过大会导致模型难以收敛,学习率过小会导致收敛速度过慢。 模型保存步数 500 10倍数 每训练一定数量步骤(或批次)后,模型状态就会被保存下来。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 M

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了