中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    深度学习 大数据 结合 更多内容
  • 方案概述

    往面临着以下挑战: 需要结合新工科理念改造升级传统软件工程专业; 将新兴技术融入人才培养与专业建设过程中; 产业项目实训案例不足; 教师缺乏真实产业项目的工程实践经验,不能独立带学生做真实企业项目; 学生学习兴趣不高,动手意愿不足; 学生的学习情况要有数据记录、可评价。 通过本方案实现的业务效果:

    来自:帮助中心

    查看更多 →

  • 附录

    漏洞扫描服务 VSS:集Web漏洞扫描、操作系统漏洞扫描、资产及内容合规检测、安全配置基线检查、弱密码检测、开源合规及漏洞检查、移动应用安全检查七核心功能为一体,自动发现网站或 服务器 在网络中的安全风险,为云上业务提供多维度的安全检测服务,满足合规要求,让安全弱点无所遁形。

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    的最小值。计算公式为:最小学习率=学习率*学习率衰减比率。 参数的选择没有标准答案,您需要根据任务的实际情况进行调整,以上建议值仅供参考。 父主题: 模型微调训练类问题

    来自:帮助中心

    查看更多 →

  • 欢迎使用基因容器服务

    欢迎使用基因容器服务 感谢您更深入的了解、学习并使用基因容器服务(GeneContainer Service,G CS )。 基因容器服务GCS提供云端基因分析解决方案,支持DNA、RNA、液态活检等主流生物基因分析场景。基因容器基于轻量级容器技术,结合数据深度学习算法,优化官方标准算法,为您

    来自:帮助中心

    查看更多 →

  • 智能场景简介

    表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。 热门推荐 基于多维度数据分析,自动匹配所覆盖用户群体更关心的内容进行重点展示。

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    Gallery功能介绍 面向开发者提供了AI Gallery模型开源社区,通过大模型为用户提供服务,普及模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习模型。 构建零门槛线上模型体验,零基础开

    来自:帮助中心

    查看更多 →

  • 方案概述

    产业数字化转型升级,通过大数据、人工智能等对场景深挖和分析 盘点农业资产:地物人政府管理者一目了然; 监测种植生产:出苗情况、病虫害监测、长势/产量/成熟度评估; 县域种植指导:历史、现在、未来的空间量化气象服务,精准农事监测; 一张图揽全局:监管决策屏、不同类型数据成果管理。

    来自:帮助中心

    查看更多 →

  • 结合典型场景设置自动化

    触发”。 图2 设置触发条件 添加一个执行动作,单击“保存”。 在数据处理中选择“新增数据”,“选择要新增数据的表单”为“数据管理”,“新增类型”选择“新增一条数据”。 当评审同意下单状态更新为已下单时,需要数据管理表单中新增该条需求的编号、收货人工号及需求人工号。 因此在字段设

    来自:帮助中心

    查看更多 →

  • IoTDA结合ModelArts实现预测分析

    选择左侧导航栏“资产管理>数据集”,进入数据集页面,并单击左上角“创建数据集”,按照如下方式创建数据集。 图6 ModelArts-创建数据集 选择左侧导航栏“开发生产>开发空间>自动学习>预测分析>创建项目”,进入创建预测分析界面。 图7 ModelArts-预测分析 选择6中创建的数据集,标签

    来自:帮助中心

    查看更多 →

  • 准备工作

    Compare工具比对GPU训练脚本和NPU训练脚本之间是否存在差异。例如是否GPU环境下开启了FA但是NPU上未开启FA。 三方库版本比对 模型训练通常会使用Deepspeed、Megatron等三方库,需要确保这些三方库的版本一致。 环境版本更新 这一项仅在条件允许的情况下进行

    来自:帮助中心

    查看更多 →

  • 排序策略

    深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称 说明 计算节点信息 用户可使用的计算资源种类

    来自:帮助中心

    查看更多 →

  • 图像搜索

    提供给用户,用户通过实时访问和调用API获取 图像搜索 结果,帮助用户在图像库中进行相同或相似图像搜索。 API文档 添加数据 搜索数据 检查数据 更新数据 删除数据 02 入门 通过使用图像搜索服务的通用图片搜索功能,查找出图片库中与本地存储的图片相匹配的图片信息。 快速使用图像搜索

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过

    来自:帮助中心

    查看更多 →

  • 场景介绍

    Optimization):直接偏好优化方法,通过直接优化语言模型来实现对模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI开发的目的是什么 AI开发的目的是将隐藏在一数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI

    来自:帮助中心

    查看更多 →

  • 场景介绍

    Optimization):直接偏好优化方法,通过直接优化语言模型来实现对模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务

    来自:帮助中心

    查看更多 →

  • 靶点化合物结合预测(CPI)

    靶点化合物结合预测(CPI) 新建CPI任务接口 查询CPI任务 父主题: API(AI辅助药物设计)

    来自:帮助中心

    查看更多 →

  • 场景介绍

    Optimization):直接偏好优化方法,通过直接优化语言模型来实现对模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了