GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习 gpu cpu 更多内容
  • 创建并管理工作空间

    默认无限制,支持设置1~60000。 分钟 推理服务CPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 推理服务GPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 训练作业CPU规格训练核数 默认无限制,支持设置1~10000。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 使用GPU虚拟化 兼容Kubernetes默认GPU调度模式 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • Volcano调度器

    name: 'cce-gpu' cce-gpu 结合CCE的GPU插件支持GPU资源分配,支持小数GPU配置。 说明: 1.10.5及以上版本的插件不再支持该插件,请使用xgpu插件。 小数GPU配置的前提条件为CCE集群GPU节点为共享模式,检查集群是否关闭GPU共享,请参见修改C

    来自:帮助中心

    查看更多 →

  • 常见故障模式

    检测:通过AOM监控CCE节点的CPU/内存/磁盘容量/磁盘IOPS/GPU/GPU缓存使用率。 恢复: 根据业务情况,手工变更节点规格或增加节点数量。 CCE工作负载的CPU /内存/GPU/GPU缓存使用率过高 检测:通过AOM监控CCE工作负载的CPU/内存/GPU/GPU缓存使用率。 恢复:

    来自:帮助中心

    查看更多 →

  • CPU占用率

    华为云帮助中心,为用户提供产品简介、价格说明、购买指南、用户指南、API参考、最佳实践、常见问题、视频帮助等技术文档,帮助您快速上手使用华为云服务。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 计费项

    通用计算型 计费因子:CPU和内存,不同规格的实例类型提供不同的计算和存储能力 按需计费 CPU:Core数量 * Core单价 * 计费时长 内存:GB数量 * GB单价 * 计费时长 请参见云容器实例价格详情中的“价格详情”。 GPU加速型 计费因子:CPU、内存和GPU,不同规格的实

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU 服务器 ),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    用户可以根据训练报告结果对代码进行调优再训练,直到得到最优的训练代码。 新建联邦学习工程:创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    模型训练方式,包含如下选项: 新建模型训练工程 新建联邦学习工程 新建训练服务 新建超参优化服务 请选择:新建训练服务。 描述 对新建训练服务的描述信息。 训练服务名称 训练服务名称。 只能以字母(A~Z a~z)开头,由字母、数字(0~9)、下划线(_)组成,不能以下划线结尾,长度范围为[1

    来自:帮助中心

    查看更多 →

  • SESSION_CPU_RUNTIME

    而改变。 min_cpu_time bigint 语句在数据库节点上的最小CPU时间,单位为ms。 max_cpu_time bigint 语句在数据库节点上的最大CPU时间,单位为ms。 total_cpu_time bigint 语句在数据库节点上的CPU总时间,单位为ms。

    来自:帮助中心

    查看更多 →

  • SESSION_CPU_RUNTIME

    语句执行的开始时间。 min_cpu_time bigint 语句在所有DN上的最小CPU时间,单位为ms。 max_cpu_time bigint 语句在所有DN上的最大CPU时间,单位为ms。 total_cpu_time bigint 语句在所有DN上的CPU总时间,单位为ms。 query

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型E CS GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • SESSION_CPU_RUNTIME

    运行而改变。 min_cpu_time bigint 语句在所有DN上的最小CPU时间,单位为ms。 max_cpu_time bigint 语句在所有DN上的最大CPU时间,单位为ms。 total_cpu_time bigint 语句在所有DN上的CPU总时间,单位为ms。 query

    来自:帮助中心

    查看更多 →

  • CPU Burst弹性限流

    间。其原理是业务在每个CPU调度周期内使用的CPU配额有剩余时,系统对这些CPU配额进行累计,在后续的调度周期内如果需要突破CPU Limit时,使用之前累计的CPU配额,以达到突破CPU Limit的效果。 未开启CPU Burst时,容器可以使用的CPU配额会被限制在Limit以内,无法实现Burst。

    来自:帮助中心

    查看更多 →

  • 查询服务监控信息

    failed_times Number 模型实例调用失败次数。 cpu_core_usage Float 已使用CPU核数。 cpu_core_total Float 总CPU核数。 cpu_memory_usage Integer 已使用内存,单位MB。 cpu_memory_total Integer

    来自:帮助中心

    查看更多 →

  • 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU)

    示例:从 0 到 1 制作 自定义镜像 并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPUGPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux

    来自:帮助中心

    查看更多 →

  • 装箱调度(Binpack)

    度节点的得分信息如下: CPU.weight * (request + used) / allocatable 即CPU权重值越高,得分越高,节点资源使用量越满,得分越高。Memory、GPU等资源原理类似。其中: CPU.weight为用户设置的CPU权重 request为当前Pod请求的CPU资源量

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • Workspace支持的CES操作系统监控指标(安装Agent)

    云桌面 1分钟 gpu_usage_gpu (Agent) GPU使用率 该指标用于统计测量对象当前的GPU使用率。 单位:百分比 采集方式(Linux):通过调用GPU卡的libnvidia-ml.so.1库文件获取。 采集方式(Windows):通过调用GPU卡的nvml.dll库获取。

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    ,集群有4块GPU卡,TFJob1和TFJob2作业各自有4个Worker,TFJob1和TFJob2各自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了