融合特征深度学习 更多内容
  • 排序策略

    路径不能包含中文。 核函数特征交互神经网络-PIN 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过向量点乘来计算特征之间的关系,而核函数特征交互神经网络使用不同的核(kernel)来对特征交互进行建模,以此来计算两个域中特征的相互关系,其中核的种类包

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 如何选中全量特征列? 算法工程处理的时候必须要先采样吗? 特征处理操作完成后怎么应用于数据集全量数据? 特征工程和算法工程的关系? JupyterLab环境异常怎么处理? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程简介 Python和Spark开发平台 JupyterLab开发平台 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 特征管理

    特征管理 特征操作接口 父主题: 应用模型

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 什么是云容器引擎

    组网规模最大支持2000节点 云原生网络2.0:面向大规模和高性能的场景。 网络性能 VPC网络叠加容器网络,性能有一定损耗 VPC网络和容器网络融合,性能无损耗 VPC网络和容器网络融合,性能无损耗 容器网络隔离 容器隧道网络模式:集群内部网络隔离策略,支持NetworkPolicy。 VPC网络模式:不支持

    来自:帮助中心

    查看更多 →

  • 全局特征信息文件

    全局特征信息文件 在特征工程、在线模块,近线模块时都会用到该全局的特征信息文件。当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features

    来自:帮助中心

    查看更多 →

  • 融合与发布

    图1 建模方式融合1 图2 建模方式融合2 图3 建模方式融合3 自定义 sql 融合 选择来源表和目标表,目标表是基础层的表,要确保来源表的表结构表名称和目标表一一对应,填写融合的 sql 语句,保存完之后在列表页启动作业。 交换任务成功运行后,系统将根据融合配置将于数仓基础层用张业务表合并为一张宽表。

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据

    来自:帮助中心

    查看更多 →

  • 产品概述

    可信数据融合和协同。 产品架构 产品架构如图1所示。 图1 产品架构 空间管理 邀请云租户作为数据提供方,动态构建 可信计算 空间,实现空间内严格可控的数据使用和监管。 数据融合分析 支持对接多个数据参与方的主流数据存储系统,为数据消费者实现多方数据的SQL Join等融合分析,各方

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成熟

    来自:帮助中心

    查看更多 →

  • 特征工程简介

    特征工程简介 用户可以通过特征工程对数据集进行数据处理、特征组合、特征转换等特征处理,最大限度的从原始数据中提取特征以供模型训练使用。此外,用户还可以将优质的特征工程发布成服务,以服务的形式对具备完全相同特征的数据进行预处理。 特征工程相关的基本概念: 特征工程:对数据进行特征处理操作的工程。

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    创建特征工程 用户可以在“数据集详情”页面基于数据集实例新建特征工程,对数据集执行特征操作;也可以在“特征工程管理”页面新建特征工程。我们以在“特征工程管理”页面创建特征工程为例,操作步骤如下。 单击“特征工程管理”页面的。 弹出“特征处理”对话框。如图1所示。 图1 创建特征工程

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    程。我们以在“特征工程管理”页面创建特征工程为例,操作步骤如下。 单击特征工程首页右上角的图标。 弹出“特征处理”对话框。如图1所示。 图1 创建特征工程 配置“特征处理”对话框参数,具体参见表1。 表1 特征工程参数配置说明 参数名称 参数说明 工程名称 特征工程的名称。 只能以字母(A~Z

    来自:帮助中心

    查看更多 →

  • 查询全局特征配置

    List 用户特征列表。 item_features List 物品特征列表。 表5 user_features 和 item_features参数说明 参数名称 参数类型 说明 feature_name String 特征名称。 feature_type String 特征类型。 feature_value_type

    来自:帮助中心

    查看更多 →

  • 查询全局特征配置

    List 用户特征列表。 item_features List 物品特征列表。 表5 user_features 和 item_features参数说明 参数名称 参数类型 说明 feature_name String 特征名称。 feature_type String 特征类型。 feature_value_type

    来自:帮助中心

    查看更多 →

  • APP特征信息无效

    APP特征信息无效 整改通知: 您填写的APP公钥或MD5值为无效信息。 可能原因: 出现此情况,可能您填写的APP公钥或MD5值为无效字段。 整改建议: 请参考变更备案,填写新的APP公钥或MD5值,确保备案APP的特征信息与实际信息保持一致。 父主题: APP信息

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了