致远高校一体化协同运营平台解决方案

致远高校一体化协同运营平台解决方案

    推理平台 模型部署 更多内容
  • 模型推理

    模型推理 将数据输入模型进行推理推理结束后将推理结果返回。 接口调用 virtual HiLensEC hilens::Model::Infer(const InferDataVec & inputs, InferDataVec & outputs) 参数说明 表1 参数说明 参数名

    来自:帮助中心

    查看更多 →

  • 模型推理

    模型推理 模型初始化成功后,调用infer接口进行模型推理。灌入一组数据,并得到推理结果。输入数据的类型不是uint8或float32数组组成的list将会抛出一个ValueError。 接口调用 hilens.Model.infer(inputs) 参数说明 表1 参数说明 参数名

    来自:帮助中心

    查看更多 →

  • 将模型部署为实时推理作业

    模型部署为实时推理作业 实时推理部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型推理预测

    来自:帮助中心

    查看更多 →

  • 推理部署

    推理部署 模型管理 服务部署 服务预测

    来自:帮助中心

    查看更多 →

  • 将模型部署为批量推理服务

    模型部署为批量推理服务 模型准备完成后,您可以将模型部署为批量服务。在“模型部署>批量服务”界面,列举了用户所创建的批量服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 准备好需要批量处理的数据,并上传至OBS目录。 已在OBS创建至少1个空的文件夹,用于存储输出的内容。

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard部署模型并推理预测

    使用ModelArts Standard部署模型推理预测 推理部署使用场景 创建模型 创建模型规范参考 将模型部署为实时推理作业 将模型部署为批量推理服务 管理ModelArts模型 管理同步在线服务 管理批量推理作业

    来自:帮助中心

    查看更多 →

  • Standard推理部署

    Standard推理部署 模型管理 部署上线

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    的空间。不同模型推理支持的max-model-len长度不同,具体差异请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明。 --trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float1

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    的空间。不同模型推理支持的max-model-len长度不同,具体差异请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明。 --trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float1

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.5。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行推理模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 Step2 配置pod 在节点自定义目录${node_path}下创建config

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • Standard推理部署

    Standard推理部署 ModelArts Standard推理服务访问公网方案 端到端运维ModelArts Standard推理服务方案 使用自定义引擎在ModelArts Standard创建模型 使用大模型在ModelArts Standard创建模型部署在线服务 第三方推理框架迁移到ModelArts

    来自:帮助中心

    查看更多 →

  • 部署模型

    建模步骤 创建部署模型。 创建新的部署模型图或者在已有的部署模型图中进行画图设计,如果部署模型场景较多,可根据实际情况将内容进行拆分,按实际部署场景创建多个部署模型图。 建立交付元素与部署元素的部署关系。 从工具箱拖入部署元素创建到部署模型图中,描述部署场景,再将交付模型中定义的打包交付

    来自:帮助中心

    查看更多 →

  • 部署模型

    部署模型的基础构造型与自定义构造型元素才认定为部署元素)。 在部署模型图上创建出来的部署元素; 引用到部署模型中的部署元素(包含关联空间中的引用的部署元素); 如何检查 查询部署模型图内元素类型为架构方案配置构造型的所有元素,查询基于模型图构出的部署模型架构树。 正确示例 每个部署元素都有连线关系和上下级关系(包含关系)。

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了