AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    逻辑回归深度学习 更多内容
  • 提交排序任务API

    项等参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 排序策略

    问题。 逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。单击查看逻辑斯蒂回归详情信息。

    来自:帮助中心

    查看更多 →

  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业 等待执行完成,在“历史作

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称 说明 名称 自定义

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 获取桶存量信息

    obs请求时返回归档存储类型存量大小 ColdObjectNumber String obs请求时返回归档存储类型对象个数 DeepArchiveSize String 返回深度归档存储类型存量大小 DeepArchiveObjectNumber String 返回深度归档存储类型对象个数

    来自:帮助中心

    查看更多 →

  • 逻辑复制

    库解析逻辑日志以实时进行数据复制。具体如图1所示。逻辑复制降低了对目标数据库的形态限制,支持异构数据库、同构异形数据库对数据的同步,支持目标库进行数据同步期间的数据可读写,数据同步时延低。 图1 逻辑复制 逻辑复制由两部分组成:逻辑解码和数据复制。逻辑解码会输出以事务为单位组织的

    来自:帮助中心

    查看更多 →

  • 逻辑模型

    当前模型工程所有逻辑模型图中的逻辑元素。 逻辑元素定义:“工程设置>元素构造型”下,绑定到4+1视图:逻辑模型的基础构造型与自定义构造型元素以及逻辑模型架构方案配置的构造型。 包括:在逻辑模型图上创建出来的逻辑元素,引用到逻辑模型中的逻辑元素(包含关联空间中的引用的逻辑元素)。 如何检查

    来自:帮助中心

    查看更多 →

  • 逻辑场景

    单击逻辑场景名称后操作栏内的“ 删除”,删除该场景。 勾选多个逻辑场景前勾选框,单击场景列表上方的“删除”,可批量删除场景。 说明: 被任务使用的逻辑场景不可被删除。 编辑逻辑场景 单击操作栏中的“编辑”,可编辑逻辑场景基本信息。 查看逻辑场景详情 单击逻辑场景名称,可查看逻辑场景详情。 基本信息:场景名称、创建时间,解析状态等信息。

    来自:帮助中心

    查看更多 →

  • 逻辑复制

    数据库解析逻辑日志以实时进行数据复制。具体如图 逻辑复制所示。逻辑复制降低了对目标数据库的形态限制,支持异构数据库、同构异形数据库对数据的同步,支持目标库进行数据同步期间的数据可读写,数据同步时延低。 图1 逻辑复制 逻辑复制由两部分组成:逻辑解码和数据复制。逻辑解码会输出以事务

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了