降采样和上采样深度学习 更多内容
  • 数据采样

    为不同数据类型的样本数据,分别设置采样比例。 示例:{(0,): 0.2, (1,): 0.8},其中(0,)(1,)分别为特征列的组合样本数据。 seed 改变随机数生成器生成随机数的种子。取值必须为整数。 默认值为空,即不对分层采样产生影响。seed值不固定的时候,每次采样出来的样本数量,以及每层采的哪些行都是不固定的。

    来自:帮助中心

    查看更多 →

  • 数据采样

    数据采样 用户在执行特征操作前,可以先对数据进行采样。数据采样后,所有的特征操作都只对采样后的数据进行处理,可以减少特征操作处理的数据量,提升特征操作的处理速度。数据采样后,执行全量数据应用时,系统会将特征操作流应用在全量数据集,生成经过特征处理后的新数据集,提供给模型训练使用。

    来自:帮助中心

    查看更多 →

  • 采样方式介绍

    联合概率分布采样 联合概率分布采样假设连续型参数符合正态分布,支持录入连续型参数之间的相关系数(值为1时,表示变量完全正相关。值为0时,表示变量间独立。值为-1时,表示变量完全负相关),并根据参数分布相关系数进行联合概率分布采样。而离散型参数根据给定的取值列表进行随机采样。 重要型采样

    来自:帮助中心

    查看更多 →

  • 采样方式有几种?

    随机采样。 重要型采样 重要性采样是在优化目标边界附近进行采样,利用上一次泛化场景仿真后得到的评测分数进行训练拟合,找到边界后不断在边界附近进行采样。 图3 重要型采样 采样结果 如下图1图2所示,对于某个逻辑场景进行拉丁超立方蒙特卡洛采样,参数都是符合随机特性,但采样得到的值不相同。

    来自:帮助中心

    查看更多 →

  • APM指标数据采样策略是什么?

    APM指标数据采样策略是什么? 在使用APM服务过程中用户开启APM数据采集开关后,APM仅采集应用性能指标及调用链相关数据,不涉及个人隐私数据,详细内容请参见数据采集。 APM可以通过非侵入方式采集APM 探针提供的应用数据、基础资源数据、用户体验数据等多项指标。 指标数据周期性完整采集,默认采集周期为1分钟。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型存放在OBS的完整路径,包括模型结构模型权值。 is_dl4j_model 是 是否是deeplearning4j的模型。 true代表是deeplearning4j,false代表是keras模型。 keras_model_config_path 是 模型结构存放在OBS的完整路径。在keras中通过model

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型存放在OBS的完整路径,包括模型结构模型权值。 is_dl4j_model 是 是否是deeplearning4j的模型。 true代表是deeplearning4j,false代表是keras模型。 keras_model_config_path 是 模型结构存放在OBS的完整路径。在keras中通过model

    来自:帮助中心

    查看更多 →

  • 算法工程处理的时候必须要先采样吗?

    算法工程处理的时候必须要先采样吗? 算法工程数据采样的目的是提升界面每个特征操作的速度。大数据量操作的时候建议先采样。数据采样后所有的特征操作,都只对采样后的数据进行处理,可以减少特征操作处理的数据量。 父主题: 特征工程

    来自:帮助中心

    查看更多 →

  • 产品术语

    模型训练输出的预测值,对应数据集的一个特征列。例如鸢尾花分类建模数据集提供了五列数据:花瓣的长度宽度、花萼的长度宽度、鸢尾花种类。其中,鸢尾花种类就是标签列。 C 超参 模型外部的参数,必须用户手动配置调整,可用于帮助估算模型参数值。 M 模型包 将模型训练生成的模型进行打包。可以基于

    来自:帮助中心

    查看更多 →

  • 云手机音视频

    云手机提供音视频媒体引擎,支持用户基于云手机完成云手机音频、视频的采集编码,并灵活设置音视频编码参数,匹配不同场景业务诉求。 如您需要进一步了解如何使用,请参见《SDK参考》。 云手机音频 初始化音频服务 初始化音频服务,设置音频初始化参数,包括音频类型、采样率、采样深度采样间隔等。 启动音频服务 启动音频服务,获取音频数据。

    来自:帮助中心

    查看更多 →

  • ALM-303046809 采样周期内,CRC错误超过告警阈值

    low-threshold-value ]*,设置合理的CRC错误告警阈值。检查是否继续产生此告警。 是 =>3。 否 =>4。 请收集告警、日志配置信息,并联系技术支持人员。 结束。 父主题: WAC&AP告警

    来自:帮助中心

    查看更多 →

  • 时序数据处理

    A:年 重采样方法 当前支持的重采样方法: 升采样时可选择:不填充、前向填充、后向填充、插值填充。 采样时可选择:求和、求均值、求方差、中位数、第一个值、最大值、最小值、最后一个值。 如果采样方法为空,则升采样默认方法为不填充;采样默认方法为均值聚合。采样方法支持传入自定义函数。 ID列

    来自:帮助中心

    查看更多 →

  • ALM-3276800169 采样周期内,CRC错误超过告警阈值

    low-threshold-value ]*,设置合理的CRC错误告警阈值。检查是否继续产生此告警。 是 =>3。 否 =>4。 请收集告警、日志配置信息,并联系技术支持人员。 结束。 父主题: V200版本LSW设备告警

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeedAccelerate都是针对深度学习训练加速的工具,但是它们的实现方式应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型 概要 准备工作 导入预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • TABLESAMPLE

    TABLESAMPLE 有BERNOULLISYSTEM两种采样方法。 这两种采样方法都不允许限制结果集返回的行数。 BERNOULLI 每一行都将基于指定的采样率选择到采样表中。当使用Bernoulli方法对表进行采样时,将扫描表的所有物理块并跳过某些行(基于采样百分比运行时计算的随机值之间的

    来自:帮助中心

    查看更多 →

  • ECS的空闲资源优化

    预估节省成本是基于用户历史商务折扣基础的应付成本进行估算,因此如果用户的商务折扣发生变化,会导致预估月度可节省成本不准确。 由于预估节省成本默认包年包月资源会正常续费,因此如果资源到期后不续费,会导致预估月度可节省成本不准确。 由于预估可节省成本未考虑手续费代金券的影响,因此根据资源优

    来自:帮助中心

    查看更多 →

  • 自动模型优化介绍

    TPE算法 模拟退火算法(Anneal) 贝叶斯优化(SMAC) 贝叶斯优化假设超参目标函数存在一个函数关系。基于已搜索超参的评估值,通过高斯过程回归来估计其他搜索点处目标函数值的均值方差。根据均值方差构造采集函数(Acquisition Function),下一个搜索点为采集

    来自:帮助中心

    查看更多 →

  • 调用链

    绿色“请求成功”按钮红色“请求失败”按钮,不支持同时置灰。 用户也可以从一些监控项视图页面,比如Url监控项的table视图,单击具体的Url跳转过来,这样就已经预先填写好搜索条件,帮助用户更快速搜索出所需要的调用链信息。 调用链详情页面可以查看调用链的完整链路信息,包含本地方法堆栈相关远程调用的调用关系

    来自:帮助中心

    查看更多 →

  • 音频采集器

    取值范围[80, 2048]。 soundMode(声道模式):取值0(单声道)1(双声道)。 每帧的采样点个数u32PtNumPerFrm采样率enSamplerate的取值决定了硬件产生中断的频率,频率过高会影响系统的性能,跟其他业务也会相互影响,建议这两个参数的取值满足算式:“(u32PtNumPerFrm

    来自:帮助中心

    查看更多 →

  • 准备声音分类数据

    分类建议每类音频至少20条,每类音频总时长至少5分钟。 建议训练数据真实识别场景的声音保持一致并且每类的音频尽量覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样采样精度保持一致。 标注质量对于最终的模型精度有极大的影响,标注过程中尽量不要出现误标情况。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了