AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 上采样 更多内容
  • 深度学习模型预测

    模型存放在OBS的完整路径,包括模型结构和模型权值。 is_dl4j_model 是 是否是deeplearning4j的模型。 true代表是deeplearning4j,false代表是keras模型。 keras_model_config_path 是 模型结构存放在OBS的完整路径。在keras中通过model

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型存放在OBS的完整路径,包括模型结构和模型权值。 is_dl4j_model 是 是否是deeplearning4j的模型。 true代表是deeplearning4j,false代表是keras模型。 keras_model_config_path 是 模型结构存放在OBS的完整路径。在keras中通过model

    来自:帮助中心

    查看更多 →

  • 数据采样

    数据采样 如果数据量太大,造成特征操作等待的时间长,用户可以通过采样功能减少特征处理的数据量,提升特征处理的速度。 数据采样提供如下两种方式,请根据实际情况进行选择: 随机采样:按照比例进行样本数据的随机采样。 分层采样:如果一个特征或多个特征组合样本值的类型多样,为保证采样数据

    来自:帮助中心

    查看更多 →

  • 数据采样

    数据采样 用户在执行特征操作前,可以先对数据进行采样。数据采样后,所有的特征操作都只对采样后的数据进行处理,可以减少特征操作处理的数据量,提升特征操作的处理速度。数据采样后,执行全量数据应用时,系统会将特征操作流应用在全量数据集,生成经过特征处理后的新数据集,提供给模型训练使用。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    eepSpeed的核心思想是在单个GPU实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供了一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。Accel

    来自:帮助中心

    查看更多 →

  • 采样方式介绍

    采样方式介绍 蒙特卡洛采样 蒙特卡洛采样是一种简单的随机抽样,根据概率分布进行采样,如对样本服从µ=0,δ=1的正态分布,通过蒙特卡洛采样进行采样采样得到的点能满足正态分布要求,如下图所示,采样得到的点会集中µ=0附近,要想采样得到更边界的点,需要进行大量采样。 图1 蒙特卡洛采样

    来自:帮助中心

    查看更多 →

  • 采样方式有几种?

    采样方式有几种? 蒙特卡洛采样 蒙特卡洛采样是一种简单的随机抽样,根据概率分布进行采样,如对样本服从µ=0,δ=1的正态分布,通过通过蒙特卡洛采样进行采样采样得到的点能满足正态分布要求,但如下图所示,采样得到的点会集中µ=0附近,要想采样得到更边界的点,需要进行大量采样。 图1

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    high_inode_usage 磁盘使用率检查 该实例当前部分云盘对应文件系统的使用率或inode使用率已经超过了80%,可能导致在这些分区无法创建新的文件 guestos.filesystem.invalid_device fstab中的设备检查 当前实例的/etc/fstab

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 产品术语

    AI应用市场 提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习深度学习、模型训练的框架,如Tensorflow、Spark MLlib、MXNet、PyTorc

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • APM指标数据采样策略是什么?

    APM指标数据采样策略是什么? 在使用APM服务过程中用户开启APM数据采集开关后,APM仅采集应用性能指标及调用链相关数据,不涉及个人隐私数据,详细内容请参见数据采集。 APM可以通过非侵入方式采集APM 探针提供的应用数据、基础资源数据、用户体验数据等多项指标。 指标数据周期性完整采集,默认采集周期为1分钟。

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 算法工程处理的时候必须要先采样吗?

    算法工程处理的时候必须要先采样吗? 算法工程数据采样的目的是提升界面每个特征操作的速度。大数据量操作的时候建议先采样。数据采样后所有的特征操作,都只对采样后的数据进行处理,可以减少特征操作处理的数据量。 父主题: 特征工程

    来自:帮助中心

    查看更多 →

  • 云手机音视频

    类型、采样率、采样深度采样间隔等。 启动音频服务 启动音频服务,获取音频数据。 停止音频服务 停止音频服务,停止音频数据的获取。 销毁音频服务 销毁音频服务。 获取音频服务状态 获取音频服务状态,包括运行中、停止、无效等。 设置音频参数 设置音频参数,包括音频类型、采样率、采样深度、采样间隔等。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了