AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    tensorflow深度学习算法原理 更多内容
  • 华为人工智能工程师培训

    0的基础与高阶操作,TensorFlow2.0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    华为云MetaStudio分身数字人驱动算法 备案编号 网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法学习真人视频

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    om”模型支持的算子,才能把TensorFlowCaffe模型转换成“.om”模型。“.om”模型支持的TensorFlowCaffe算子边界请见附录Caffe算子边界和Tensorflow算子边界。 “.om”模型当前暂不能完全兼容TensorFlow内置的Keras API。 “.om”模型当前不支持Caffe2。

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 准备工作

    定”,完成实例创建。 安装TensorFlow 进入CodeArts IDE Online实例,创建并打开一个空白工作目录,命令如下。 mkdir ai-test 使用pip安装TensorFlow等依赖包,为加快安装速度此处安装的是tensorflow-cpu,命令如下。 1 2

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎TensorFlowPyTorch、MindSpore等,大量的开发者基于主流AI引擎,开发并训练其业务所需的模型。 评估模型 训练得到模

    来自:帮助中心

    查看更多 →

  • 概要

    IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • 华为云职业认证类别介绍

    I产品及解决方案能力的工程师。 通过HCIA-AI认证,将证明您了解人工智能发展历史、昇腾AI体系和全栈全场景AI战略,掌握传统机器学习深度学习的相关算法;具备利用TensorFlow开发框架和MindSpore开发框架进行搭建、训练、部署神经网络的能力;能够胜任人工智能领域销

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。 优化原理 对于ModelArt

    来自:帮助中心

    查看更多 →

  • Volcano调度概述

    Volcano调度概述 Volcano是一个基于Kubernetes的批处理平台,提供了机器学习深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性,提供了高性能任务调度引擎、高性能异构芯片管理、高性能任务运行管理等通用计算能力。 Volcano

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1.13.1 GPU 是 是 conda3-ubuntu18

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    division, print_function, unicode_literals # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持的模型必须是ModelArts训练出的模型吗?

    )模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 ModelArts训练模型 华为HiLens支持在ModelArts训练自己的算法模型,然后导入华为HiLens使用,训练模型可

    来自:帮助中心

    查看更多 →

  • 什么是主机安全?

    可视化的管理平台,便于您集中下发配置信息,查看在同一区域内主机的防护状态和检测结果。 HSS云端防护中心 使用AI、机器学习深度算法等技术分析主机中的各项安全风险。 集成多种杀毒引擎,深度查杀主机中的恶意程序。 接收您在控制台下发的配置信息和检测任务,并转发给安装在 服务器 上的Agent。 接收

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了