AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    tensorflow深度学习算法原理 更多内容
  • 旧版训练迁移至新版训练需要注意哪些问题?

    编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。 如果您需要使用旧版训练引擎,单击显示旧版引擎即可选择旧版引擎。新旧版支持的预置引擎差异请参考表1。详细的训练引擎版本说明请参考新版训练和旧版训练分别支持的AI引擎。 表1 新旧版预置引擎差异 工作环境 预置训练I引擎与版本

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0.1秒。 在线商城 智能审核商家/用户上传图像,高效识别并预警不合规图片,防止涉黄、涉暴类图像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:单张图像识别速度小于0

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    Tensorflow算子边界 “.om”模型支持的Tensorflow算子边界如表1所示。 表1 TensorFlow算子边界 序号 Python API C++ API 边界 1 tf.nn.avg_pool AvgPool Type:Mean 【参数】 value:4-D t

    来自:帮助中心

    查看更多 →

  • 迁移学习

    单击图标,运行“评估迁移数据”代码框内容。 评估迁移算法 如果评估迁移数据的结果为当前数据适合迁移,可以使用评估迁移算法评估当前数据适合采用哪种算法进行迁移。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 迁移评估 > 评估迁移算法”。界面新增“评估迁移算法”内容。 对应参数说明,如表4所示。

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 执行作业

    常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 什么是ModelArts

    ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及模型按需部署能力,帮助用户快速创建和部署AI应用,管理全周期AI工作流。 “一站式”是指AI开发的各个环节,包括数据处理、算法开发、模型训练、创建AI应用、AI应用部署都可

    来自:帮助中心

    查看更多 →

  • 鉴权原理

    se64转码,得到入会token。 Token原理: base64Encode(payload + "@#@" + HMA CS HA256(signature)) 最终的signature值为: 示例: eyJ0aW1lU3RhbXAiOjE2NDg2NDE0NzQxNzEsInJ

    来自:帮助中心

    查看更多 →

  • 背景与原理

    背景与原理 业务应用构建登录页面时,一般情况下是通过使用AstroZero的高级页面能力实现。您可以通过本节认识高级页面,并了解登录页面的开发流程。 了解高级页面 AstroZero前端页面有标准页面、高级页面和表单三种。本节主要带您了解、学习并使用高级页面。 标准页面:对于一般

    来自:帮助中心

    查看更多 →

  • 背景和原理

    背景和原理 本节主要通过创建一个标准页面,调用一个具有编辑设备功能的脚本,实现编辑设备信息功能。在进行开发前,您需要先了解脚本、公共接口以及标准页面的相关知识。 学习地图 如图1所示,通过本章的学习和实践,您将了解“标准页面”的能力,并掌握脚本的开发方法。 图1 学习地图 脚本 公共接口

    来自:帮助中心

    查看更多 →

  • SCP原理介绍

    SCP原理介绍 SCP分类 SCP按照策略创建者可分为两类,分别是系统策略和自定义策略。 系统策略 华为云服务在组织预置了常用SCP,称为系统策略。组织管理员给组织单元或账号绑定SCP时,可以直接使用这些策略。系统策略只能使用,不能修改。现有的SCP系统策略请参见:SCP系统策略列表。

    来自:帮助中心

    查看更多 →

  • 业务代码问题

    module name 'unidecode'” 分布式Tensorflow无法使用“tf.variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业进程异常退出

    来自:帮助中心

    查看更多 →

  • 迁移工作原理

    迁移工作原理 概述 迁移流程 数据识别与准备 数据迁移 数据安全与完整性保障

    来自:帮助中心

    查看更多 →

  • 高性能调度

    也可以方便灵活地进行定制化开发。 应用场景4:高精度资源调度 Volcano 在支持AI,大数据等作业的时候提供了高精度的资源调度策略,例如在深度学习场景下计算效率非常重要。以TensorFlow计算为例,配置“ps”和“worker”之间的亲和性,以及“ps”与“ps”之间的反

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    缩短训练时间。 Volcano批量调度系统:加速AI计算的利器 Volcano是一款构建于Kubernetes之上的增强型高性能计算任务批量处理系统。作为一个面向高性能计算场景的平台,它弥补了Kubernetes在机器学习深度学习、HPC、大数据计算等场景下的基本能力缺失,其中

    来自:帮助中心

    查看更多 →

  • 导入/转换ModelArts开发模型

    导入/转换ModelArts开发模型 技能可以抽象地理解为算法模型+逻辑代码。算法模型负责关键的AI推理,逻辑代码负责处理模型推理的结果。因此在HiLens Studio开发技能时,需要将模型导入HiLens Studio。 本章节介绍如何将在ModelArts开发的模型导入HiLens

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • JWT认证原理

    JWT包含三部分:头部Header、负载Payload和签名Signature。 头部Header 头部描述JWT的元数据,包括算法alg和类别typ等信息。alg描述签名算法,这样接收者可以根据对应的算法来验证签名,默认是如下所示的HS256,表示 HMAC-SHA256;typ表示令牌类型,设置为JWT,表示这是一个JWT类型的令牌。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了