弹性云服务器 ECS

 

弹性云服务器(Elastic Cloud Server)是一种可随时自助获取、可弹性伸缩的云服务器,帮助用户打造可靠、安全、灵活、高效的应用环境,确保服务持久稳定运行,提升运维效率

 
 

    云服务器评测 更多内容
  • 支持云审计的关键操作

    downloadAlgorithmMeta 创建评测镜像 octopus createSimEvaluationImages 更新评测镜像 octopus updateSimEvaluationImages 删除评测镜像 octopus deleteSimEvaluationImages 创建评测 octopus

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如c

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如c

    来自:帮助中心

    查看更多 →

  • 流程指引

    创建镜像仓库 仿真服务 算法管理 在创建任务前,需要创建算法,用户可从本地上传容器镜像。 创建仿真算法 评测管理 支持内置评测配置和自定义评测镜像,对仿真任务中的算法展开评测。 创建评测 场景管理 创建仿真场景,仿真场景库、测试套件、测试用例和逻辑泛化场景用于仿真开发。 创建仿真场景 任务管理

    来自:帮助中心

    查看更多 →

  • CCE集群

    一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile模式进行构建。以训练、评测镜像为例,一般的镜像制作Dockerfile示例如下(xxx替换为实际路径): # 载入基础镜像,训练或评测引擎一般需包含cu

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──convert_awq_to_npu.py # awq权重转换脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 任务队列

    任务队列 评测任务在创建之后,可在此查看任务队列,同时支持对任务优先级的调整。 在左侧菜单栏中单击“训练服务 > 模型评测”。 选择“任务队列”页签,可查看任务。 图1 任务队列 评测任务队列相关操作 在“任务队列”页签,还可以进行以下操作。 表1 评测任务队列相关操作 任务 操作步骤

    来自:帮助中心

    查看更多 →

  • 仿真服务简介

    保存等操作。 算法管理:用于对接客户的上云算法,并支持算法的版本级管理,并可自动化触发关联的批量算法。 评测管理:支持内置评测配置和自定义评测镜像,对仿真任务中的算法展开评测。 场景管理:包含场景、场景库、逻辑场景、逻辑场景库、测试用例、测试套件等。支持页面上传、泛化、在线仿真编

    来自:帮助中心

    查看更多 →

  • 模型数据集支持

    模型数据集支持 模型评测支持多种数据集格式,包括Octopus格式和部分常见开源数据集格式,以下为各类别模型的数据集支持列表和示例。 目标检测2D 目标检测3D 目标追踪2D 目标追踪3D 语义分割2D 语义分割3D 车道线检测 分类 父主题: 模型评测

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 实施步骤

    化解决方案的场景下,天宽也会开发自定义评测脚本,确保评测方案能够全面覆盖项目的特殊需求,实现对模型表现的全方位评估和优化。通过这一系统化的评测流程,天宽确保模型能够在实际业务中达到最佳性能。 图9 精度对比 实施模型能力评测时,首先运行评测测试,执行模型在预设的测试集上的推理,并

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    max_workers:请求的最大线程数,默认为1。 service_name:服务名称,保存评测结果时创建目录,示例为:llama2-13b-chat-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:成功部署推理

    来自:帮助中心

    查看更多 →

  • 镜像制作(训练)

    一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile模式进行构建。以训练、评测镜像为例,一般的镜像制作Dockerfile示例如下(xxx替换为实际路径): # 载入基础镜像,训练或评测引擎一般需包含cu

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──llm_tools #推理工具包 ├──llm_evaluation #推理评测代码包 ├──benchmark_eval # 精度评测 ├── config ├── config.json

    来自:帮助中心

    查看更多 →

  • 预警系统激活(Warning)检测

    期望的预警次数; 默认期望的预警次数为-1,此时只要该预警功能激活至少一次,则评测项通过;当设置期望的预警次数为正数或0时(0代表期望预警功能不被激活),只有当预警功能激活次数和期望预警次数相同时,评测项才通过; 该指标仅对有算法pb的场景有效。当算法pb中未设置预警项,或预警项

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    max_workers:请求的最大线程数,默认为1。 service_name:服务名称,保存评测结果时创建目录,示例为:qwen-14b-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:服务接口地址,若服务

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如ceval_gen、mmlu_gen

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了