中文口语评测 更多内容
  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • CCE集群

    一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile模式进行构建。以训练、评测镜像为例,一般的镜像制作Dockerfile示例如下(xxx替换为实际路径): # 载入基础镜像,训练或评测引擎一般需包含cu

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 实施步骤

    化解决方案的场景下,天宽也会开发自定义评测脚本,确保评测方案能够全面覆盖项目的特殊需求,实现对模型表现的全方位评估和优化。通过这一系统化的评测流程,天宽确保模型能够在实际业务中达到最佳性能。 图9 精度对比 实施模型能力评测时,首先运行评测测试,执行模型在预设的测试集上的推理,并

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    max_workers:请求的最大线程数,默认为1。 service_name:服务名称,保存评测结果时创建目录,示例为:llama2-13b-chat-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:成功部署推理

    来自:帮助中心

    查看更多 →

  • API接口返回的中文字符为乱码,如何解决?

    API接口返回的中文字符为乱码,如何解决? 当API接口返回的中文字符出现乱码时,通常是因为字符编码格式不匹配。 DLI 接口返回的结果编码格式为“UTF-8”,在调用接口获取返回结果时需要对返回的信息编码转换为“UTF-8”。 例如,参考如下实现对返回的response.cont

    来自:帮助中心

    查看更多 →

  • 镜像制作(训练)

    一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile模式进行构建。以训练、评测镜像为例,一般的镜像制作Dockerfile示例如下(xxx替换为实际路径): # 载入基础镜像,训练或评测引擎一般需包含cu

    来自:帮助中心

    查看更多 →

  • 支持云审计的关键操作

    downloadAlgorithmMeta 创建评测镜像 octopus createSimEvaluationImages 更新评测镜像 octopus updateSimEvaluationImages 删除评测镜像 octopus deleteSimEvaluationImages 创建评测 octopus

    来自:帮助中心

    查看更多 →

  • 准备代码

    ├──llm_tools #推理工具包 ├──llm_evaluation #推理评测代码包 ├──benchmark_eval # 精度评测 ├── config ├── config.json

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如c

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如c

    来自:帮助中心

    查看更多 →

  • 模型开发

    大规模数据集,从而帮助用户快速提升模型性能。 模型评测:为了确保模型的实际应用效果,平台提供了多维度的模型评测功能。通过自动化的评测机制,用户可以在训练过程中持续监控模型的精度、召回率等关键指标,及时发现潜在问题并优化调整。评测功能能够帮助用户在多种应用场景下验证模型的准确性与可靠性。

    来自:帮助中心

    查看更多 →

  • CMake Build Tool插件运行调试时中文乱码的问题

    Tool插件运行调试时中文乱码的问题 现象: 1. 文件运行在内部终端的乱码 main.cpp文件中有中文文字 构建生成可执行文件,右键单击运行 运行结果出现中文乱码: 2.运行调试使用外部 终端出现乱码 文件里面有输入输出,配置外部terminal, 在terminal中打印出来的中文乱码 解决办法:

    来自:帮助中心

    查看更多 →

  • Hive元数据使用RDS时创建视图表中文乱码

    Hive元数据使用RDS时创建视图表中文乱码 用户问题 MRS 3.1.0版本集群,Hive元数据配置为RDS数据库中存储。创建视图时,使用case when语句中文显示乱码。 例如建表语句如下: 查看视图内容中,中文乱码: 原因分析 该问题是由于元数据表相关字段编码不是UTF 8,导致中文显示异常。 处理步骤

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    max_workers:请求的最大线程数,默认为1。 service_name:服务名称,保存评测结果时创建目录,示例为:qwen-14b-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:服务接口地址,若服务

    来自:帮助中心

    查看更多 →

  • 模型数据集支持

    模型数据集支持 模型评测支持多种数据集格式,包括Octopus格式和部分常见开源数据集格式,以下为各类别模型的数据集支持列表和示例。 目标检测2D 目标检测3D 目标追踪2D 目标追踪3D 语义分割2D 语义分割3D 车道线检测 分类 父主题: 模型评测

    来自:帮助中心

    查看更多 →

  • 仿真服务快速入门

    仿真服务快速入门 流程指引 步骤一:创建镜像仓库 步骤二:创建仿真算法 步骤三:创建评测 步骤四:创建仿真场景 步骤五:创建仿真任务 步骤六:查看仿真评测结果

    来自:帮助中心

    查看更多 →

  • 版本说明和要求

    ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如ceval_gen、mmlu_gen

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度。 eval_datasets:评测数据集和评测方法,比如ceval_gen、mmlu_gen

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了