无服务器图片生成缩略图

无服务器图片生成缩略图

    python识别图片文字训练 更多内容
  • 通过python将图片转成base64编码

    通过python图片转成base64编码 下方示例代码以Python为例,介绍如何将d:\demo.jpg图片转换成base64编码。您也可以使用在线的图片转base64工具。 import base64 with open("d:\demo.jpg", "rb") as image_file:

    来自:帮助中心

    查看更多 →

  • 方案概述

    函数工作流 :用于实现调用文字识别服务的业务逻辑,当OBS桶收到上传的发票文件后,会自动通知函数调用文字识别服务,并将结果存放到指定的OBS桶里。 文字识别服务:提供发票识别与验真服务,识别用户上传的发票内容以及对接国税局系统进行真伪验证。 方案优势 场景丰富 支持发票识别和发票验真功能。

    来自:帮助中心

    查看更多 →

  • 财务报表识别

    财务报表识别 功能介绍 识别用户上传的表格图片中的文字内容,并将识别的结果返回给用户。 约束与限制 只支持识别PNG、JPG、JPEG、BMP、TIFF格式图片。 图像各边的像素大小在15px到8192px之间。 图像中识别区域有效占比超过80%,保证整张表格及其边缘包含在图像内。

    来自:帮助中心

    查看更多 →

  • 评估

    评估 确定模板图片的参照字段和识别区后,需要对模板图片进行评估和考察。您可以通过上传测试图片,在线评估模板的识别情况,保证能正确识别同样模板下其他图片中的识别文字。 前提条件 已在自定义OCR控制台选择“通用单模板工作流”创建应用,并完成框选识别区步骤,详情请见框选识别区。 进入评估页面

    来自:帮助中心

    查看更多 →

  • 如何提高识别速度

    如何提高识别速度 识别速度与图片大小有关,图片大小会影响网络传输、图片base64解码等处理过程的时间,因此建议在图片文字清晰的情况下,适当压缩图片的大小,以便降低图片识别时间。推荐上传JPG图片格式。 根据实践经验,一般建议证件类的小图(文字少)在1M以下,A4纸大小的密集文档大图在2M以下。

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    LLM大语言模型训练推理场景 样例 场景 说明 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导 预训练、SFT全参微调训练、LoRA微调训练 介绍主

    来自:帮助中心

    查看更多 →

  • Python

    2018.3.5或以上版本,可至IntelliJ IDEA官方网站下载。 获取并安装Python安装包(可使用2.7.9+或3.X,包含2.7.9),可至Python官方下载页面下载。 Python安装完成后,在命令行中使用pip安装“requests”库。 pip install

    来自:帮助中心

    查看更多 →

  • Python

    n或者python3,查看Python是否已经安装。python命令只能查询Python 2.x版本,python3命令只能查询Python 3.x版本,如果无法确认Python版本,请分别输入两个命令查看结果。 以Python 3.x为例,得到如下回显,说明Python已安装。

    来自:帮助中心

    查看更多 →

  • Python

    用户可以参考表1和表2配置Python节点的参数。 表1 属性参数 参数 是否必选 说明 Python语句或脚本 是 可以选择Python语句或Python脚本。 Python语句 单击“Python语句”参数下的文本框,在“Python语句”页面输入需要执行的Python语句,选择Python脚本。

    来自:帮助中心

    查看更多 →

  • Python

    Python 样例 发送短信(示例1)、发送分批短信(示例1) 发送短信(示例2)、发送分批短信(示例2) 接收状态报告、接收上行短信 环境要求 基于Python 3.7.0版本,要求Python 3.7及以上版本。 引用库 requests 2.18.1(仅示例1引用) 请自行下载安装Python

    来自:帮助中心

    查看更多 →

  • Python

    Python 样例 语音验证码场景API、呼叫状态通知API、话单通知API 环境要求 Python 3.0及以上版本。 引用库 requests 2.18.1 请自行下载安装Python 3.x,并完成环境配置。 打开命令行窗口,执行pip install requests命令。

    来自:帮助中心

    查看更多 →

  • 方案概述

    IVS业务业务逻辑,当收到OBS上传人脸信息通知后,自动从OBS桶内获取识别出的姓名、身份证号、人脸信息并调用 人证核身 服务 IVS进行人证核身,并将结果转存到OBS桶里。 文字识别 OCR和人证核身服务 IVS:提供证件识别和人证核身服务,识别用户上传的证件图片以及人脸图片核对,并将结果以JSON格式返回。 方案优势

    来自:帮助中心

    查看更多 →

  • 视觉套件(使用零售商品识别工作流开发应用)

    单击右下角的“下一步”。 进入“应用开发>模型训练”页面。 步骤6:训练模型 在“应用开发>模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示训练详情。 图5 训练详情 步骤7:评估模型 在“应用开发>模型评估”

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。

    来自:帮助中心

    查看更多 →

  • Python

    Python 简介 开始工程 构建环境 代码编辑 代码浏览 代码搜索 代码校验 测试 调试 启动配置

    来自:帮助中心

    查看更多 →

  • Python

    Python 样例 发送短信示例、发送分批短信示例、接收状态报告示例、 环境要求 基于Python 3.7.0版本,要求Python 3.7及以上版本。 发送短信为单模板群发短信示例,发送分批短信为多模板群发短信示例。 本文档所述Demo在提供服务的过程中,可能会涉及个人数据的使

    来自:帮助中心

    查看更多 →

  • Python

    Secret等信息,具体参见认证前准备。 获取并安装Python安装包(可使用2.7.9+或3.X),如果未安装,请至Python官方下载页面下载。 Python安装完成后,在cmd/shell窗口中使用pip安装“requests”库。 pip install requests

    来自:帮助中心

    查看更多 →

  • Python

    Python 样例 语音通知API、呼叫状态通知API、话单通知API 环境要求 Python 3.0及以上版本。 引用库 requests 2.18.1 请自行下载安装Python 3.x,并完成环境配置。 打开命令行窗口,执行pip install requests命令。 执行pip

    来自:帮助中心

    查看更多 →

  • 定义预处理

    使用通用单模板工作流上传模板图片后,需要对模板图片进行预处理,通过旋转、裁剪、降噪等操作。图片预处理的目的是保留图片的关键内容,去掉冗余部分,保持图片内容清晰可见,保证模型识别的准确性。 前提条件 已在文字识别套件控制台选择“通用单模板工作流”新建应用,并上传模板图片,详情请见上传模板图片。 定义预处理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了