Joinpoint 回归模型 更多内容
  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 在ModelArts训练得到的模型欠拟合怎么办?

    在ModelArts训练得到的模型欠拟合怎么办? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    业记录。模型训练页面展示了历史作业的执行情况、模型的评估指标和生成时间。模型的评估指标是使用训练数据集产生的。 单击“查看参数”可以查看该模型训练时指定的机器学习作业参数;逻辑回归作业可以单击“查看中间结果”实时查看每一次迭代的评估指标。 图12 模型训练参数 进行模型评估。在历

    来自:帮助中心

    查看更多 →

  • 获取模型列表

    ModelDto objects 模型列表。 count Integer 模型总数。 表5 ModelDto 参数 参数类型 描述 name String 模型名称。 id String 模型ID。 type String 模型类型。 create_time String 模型创建时间。 finish_time

    来自:帮助中心

    查看更多 →

  • 查询分子搜索作业详情

    id String 模型ID。 task_id String 任务ID。 name String 模型名称。 creator String 模型创建者。 type String 模型类型。 value_range ValueRange object 区间上下限,仅回归型存在。 description

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法

    来自:帮助中心

    查看更多 →

  • 查询分子属性预测作业详情

    id String 模型ID。 task_id String 任务ID。 name String 模型名称。 creator String 模型创建者。 type String 模型类型。 value_range ValueRange object 区间上下限,仅回归型存在。 description

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。 回归 回归反映的是数据属性值在时间上的特征,产生一个将数据项映射

    来自:帮助中心

    查看更多 →

  • 在模型广场查看模型

    在左侧导航栏,单击“模型广场”。 在“模型广场”页面的“模型筛选”区域,按需选择模型系列、模型类型和支持作业,或者直接输入模型名称进行搜索。 在“模型广场”页面的目标模型区域,单击“模型详情”。 在“模型详情”页面可以查看模型的介绍、基本信息和版本信息。 在“模型详情”页面右上角,

    来自:帮助中心

    查看更多 →

  • 转换逻辑模型为物理模型

    转换逻辑模型为物理模型 功能介绍 转换逻辑模型为物理模型,转换成功则显示转换后的目标模型信息。 异常:目标模型信息的“id”等属性为null时,则需要调用《获取操作结果》接口查看具体报错信息:GET https://{endpoint}/v1/{project_id}/design/operation-results

    来自:帮助中心

    查看更多 →

  • 模型测试

    单击界面左下角的“异常检测模型测试”,弹出“异常检测模型测试”代码框,如图3所示。 “是否绘图”请选择“是”,可以通过绘图查看模型的测试验证效果。 图3 异常检测模型测试 单击“异常检测模型测试”代码框左侧的图标。等待模型测试完成。 模型测试打印结果示例,如图4所示。截图仅为模型测试打印结果的一部分,具体以实际打印结果为准。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 硬盘故障检测模板会预置模型训练工程,无需关注,下面会提供端到端的操作流程,帮助用户快速熟悉模型训练界面操作。 单击菜单栏中的“模型训练”,进入模型训练首页。 可以看到预置的“hardisk_detect”模型训练工程,这是硬盘故障检测模板预置的模型训练工程,本次不使用。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型 模型推理

    来自:帮助中心

    查看更多 →

  • 测试模型

    测试模型 用测试数据测试模型的泛化能力。训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 单击“训练模型”左下方的“测试模型”,新增“测试模型”内容。 参数配置均保持默认值。 单击“测试模型”代码框左侧的图标,进行模型评估。 模型测试效果会通过表格的形式在下方展示。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 特征和算法确定后,可以开始训练模型。 训练模型 单击“模型选择”左下方的“训练模型”。 新增“训练模型”内容,如图1所示。 图1 训练模型 单击“训练模型”代码框左侧的图标,进行模型训练。 模型训练完成后,界面下方展示模型的评估效果。 第一列内容的含义如下所示: 0:标注为0的所有样本。可以理解为标签。

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 单击菜单栏中的“模型管理”,可在“模型管理”界面查看打包好的模型,如图1所示。 图1 模型管理 父主题: 使用模型训练服务快速训练算法模型

    来自:帮助中心

    查看更多 →

  • 发布模型

    发布模型 逻辑实体创建完成后,必须创建对应的物理实体,才可以发布逻辑模型。 操作步骤 在数据服务左侧导航,选择“工具箱>数据开发>数据建模”。 在左侧导航中,单击展开分层,选择一个分层。 在需要发布的逻辑实体对应的“操作”列下,单击>。 在“提示”对话框中单击“确认”。 在“确认”对话框中单击“确定”。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 使用特征工程处理后生成的训练集进行模型训练。 创建联邦学习训练任务(简易编辑器) 单击简易编辑器界面右上角的“训练”。 进入“训练任务配置”界面,如图1所示。 图1 训练任务配置 参数说明,如表1所示。 表1 参数配置 区域 参数名称 参数描述 任务说明 任务名称 训练任务的名称。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务

    来自:帮助中心

    查看更多 →

  • 模型管理

    模型管理 模型管理简介 创建模型包 编辑模型包 上架模型包至AI市场 发布推理服务 模型包完整性校验 父主题: 用户指南

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了