AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习中的回归模型 更多内容
  • AI开发基本概念

    AI开发基本概念 机器学习常见分类有3种: 监督学习:利用一组已知类别的样本调整分类器参数,使其达到所要求性能过程,也称为监督训练或有教师学习。常见回归和分类。 非监督学习:在未加标签数据,试图找到隐藏结构。常见有聚类。 强化学习:智能系统从环境到行为映射学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    因子分解机算法是一种基于矩阵分解机器学习算法,能够自动进行二阶特征组合、学习特征之间关系,无需人工经验干预,同时能够解决组合特征稀疏问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机改进版本,因子分解机每个特征对其他域隐向量都一致,而域感知因子分解机每个特征对其他每个

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    值范围为0~1小数。 树数量 定义XGBoost算法决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量 定义每个特征切分点数量,数量越多,准确率越高,计算时间越长。取值范围为5~10的整数。

    来自:帮助中心

    查看更多 →

  • 最新动态

    相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用,升级、回滚是一个常见场景, TICS

    来自:帮助中心

    查看更多 →

  • 在ModelArts训练得到的模型欠拟合怎么办?

    神经网络学习率、学习衰减率、隐藏层数、隐藏层单元数、Adam优化算法β1和β2参数、batch_size数值等。 其他算法:随机森林树数量,k-meanscluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景合规实践 该示例模板对应合规规则说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护版本 cce CC

    来自:帮助中心

    查看更多 →

  • 概述

    多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出模型权重在某一数据集上预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 M

    来自:帮助中心

    查看更多 →

  • 什么是Ray

    通过提供对分布式计算支持,Ray促进了更快模型训练和更有效资源使用,对于那些希望在多台机器上扩展其应用研究人员和工程师来说,是一个强有力工具。同时,Ray生态系统还包括一些高级库,例如Ray Tune(用于超参数调整)、RLlib(用于强化学习)、Ray Serve(用于模型服务)等,以满足不同场景下的需求。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    适用于处理超大规模数据,含大量稀疏特征在线学习常见优化算法。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型1范数之上,用来对模型值进行限制防止过拟合。默认0。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    问答模型训练(可选) 为了让问答机器人更加智能,回答更加准确,您可以通过训练模型来提升问答机器效果。 问答训练通过用户问法对机器人进行测试,在匹配问题返回结果,按相似度得分进行倒序排序,正确匹配问题出现在前一、三、五位占比将作为衡量模型效果指标,数值越高代表模型效果越好。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    据安全前提下,利用多方数据实现联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者数据特征重叠较多,而样本ID重叠较少情况,联合多个参与者具有相同特征多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出模型权重在某一数据集上的预测输出效果。

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力一种科技能力。AI最核心能力就是根据给定输入做出判断或预测。 AI开发目的是什么 AI开发目的是将隐藏在一大批数据背后信息集中处理并进行提炼,从而总结得到研究对象内在规律。 对数据进行分析,一般通过使用适当统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 方案概述

    该解决方案基于 AI开发平台 ModelArts为用户提供了一个快速、便捷和可靠方式,实现对电池、电机和电控数据预测分析。适用于电池、电机、电控等数据预测分析场景,可以帮助企业更好了解产品性能,从而更好进行生产和研发。 方案架构 该解决方案基于AI开发平台ModelArts,

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了