softmax回归 更多内容
  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 使用模型

    Sequential([model, tf.keras.layers.Softmax()]) predictions_single = probability_model.predict(img) class_names[np

    来自:帮助中心

    查看更多 →

  • 获取桶存量信息

    String obs请求时返回低频存储类型对象个数 ColdSize String obs请求时返回归档存储类型存量大小 ColdObjectNumber String obs请求时返回归档存储类型对象个数 DeepArchiveSize String 返回深度归档存储类型存量大小

    来自:帮助中心

    查看更多 →

  • 预测类数据集格式要求

    平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,每个数据点都有一个时间戳,表示数据在时间上的位置。它用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种预测因子(特征),用于预测连

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。 回归 回归反映的是数据属性值在时间上的特征,产生一个将数据项映射

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    (stationary) AR(p):自回归模型,当前值可以描述为p个之前值的线性组合。利用线性组合的权值即可预测下一个值。 MA(q):移动平均模型,当前值可以描述为序列均值加上q个之前值的白噪声的线性组合。利用线性组合的权值也可预测下一个值。 ARMA(p, q):自回归移动平均模型,综合了A

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    (stationary) AR(p):自回归模型,当前值可以描述为p个之前值的线性组合。利用线性组合的权值即可预测下一个值。 MA(q):移动平均模型,当前值可以描述为序列均值加上q个之前值的白噪声的线性组合。利用线性组合的权值也可预测下一个值。 ARMA(p, q):自回归移动平均模型,综合了A

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三种算法类型,XGBoost支持“分类”和“回归”两种任务类型。 图2 新建作业 在弹出的界面进行数据选择,选择两方数据集作为整个作业的数据集,必须选择

    来自:帮助中心

    查看更多 →

  • 查询分子搜索作业详情

    ValueRange object 区间上下限,仅回归型存在。 description String 模型描述信息。 表7 ValueRange 参数 参数类型 描述 lower Float 区间下限,仅回归型存在。 upper Float 区间上限,仅回归型存在。 表8 FailedReasonRecord

    来自:帮助中心

    查看更多 →

  • 使用IPD系统设备类项目管理智能手表研发项目的缺陷

    创建并提交。 步骤二:根因定位与排期修复 开发人员接到问题单后需要对其进行根因定位和排期修复。 步骤三:回归测试与验收缺陷 开发人员将问题单修复完成后,测试人员需要对其进行回归测试,缺陷单创建人需要对其进行验收。 准备工作 在进行具体的任务操作前,您需要完成以下准备工作。 项目负

    来自:帮助中心

    查看更多 →

  • 测试用例等级选择规则

    1级 基本功能验证,可用于继承特性的基本功能验证、迭代验收前的基本功能验证等,占比20%左右。 3 2级 重要特性验证,可用于测试版本(非回归版本)中功能测试,占比60%左右。 4 3级 一般功能/非重要功能验证,包括对基本/重要功能的异常测试,占比10%~15%左右。 5 4级

    来自:帮助中心

    查看更多 →

  • 获取模型列表

    最小长度:1 最大长度:128 表7 ValueRange 参数 参数类型 描述 lower Float 区间下限,仅回归型存在。 upper Float 区间上限,仅回归型存在。 表8 ModelMetric 参数 参数类型 描述 name String 评估指标的名称。 最小长度:1

    来自:帮助中心

    查看更多 →

  • 查询分子属性预测作业详情

    ValueRange object 区间上下限,仅回归型存在。 description String 模型描述信息。 表11 ValueRange 参数 参数类型 描述 lower Float 区间下限,仅回归型存在。 upper Float 区间上限,仅回归型存在。 表12 ClusterJobRsp

    来自:帮助中心

    查看更多 →

  • 缺陷全生命周期管理

    缺陷全生命周期管理的流程如下: 测试人员发现缺陷并提交缺陷单。 缺陷责任人定位缺陷产生的原因,并根据版本计划及时修复。 测试人员根据最新实现功能回归测试缺陷单,并验收。 项目经理可以查看缺陷的度量数据。 缺陷责任人可根据项目实际情况对缺陷单的关联项进行追溯。 介绍视频 父主题: 功能特性

    来自:帮助中心

    查看更多 →

  • RES11 可靠性测试

    而提前发现系统风险、提升测试质量、完善风险预案、加强监控告警、提升故障应急效率等方面做到故障发生前有效预防,故障发生时及时应对,故障恢复后回归验证。基于故障本身打造分布式系统韧性,持续提升软件质量,增强团队对软件生产运行的信心,减少业务运行中出现类似问题。 为了保证测试的有效性,测试环境需要与生产环境保持一致。

    来自:帮助中心

    查看更多 →

  • 发布预测类数据集

    > 数据发布”,单击界面右上角“创建发布数据集”。 在“创建发布数据集”页面,选择“预测”类型的数据集。并根据训练任务场景选择“时序”、“回归分类”类型的数据。 图2 创建预测类数据集发布任务 当前预测类数据集仅支持发布默认格式,选择好数据集的发布格式后,单击“下一步”。 设置数

    来自:帮助中心

    查看更多 →

  • 执行批量预测作业

    看结果”和“作业报告”。 “查看结果”为预测结果存储相对路径。分类作业的预测结果为0/1标签以及正负样本概率,0表示负样本,1表示正样本;回归作业的预测结果为最后的样本得分。 “作业报告”为作业的详细信息,如作业输入条件、作业输出结果、执行环境、合作方信息、计算过程等。 图3 历史预测

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了