高性能计算gpu 更多内容
  • 高性能调度

    应用场景5:在线离线作业混合部署 当前很多业务有波峰和波谷,部署服务时,为了保证服务的性能和稳定性,通常会按照波峰时需要的资源申请,但是波峰的时间可能很短,这样在非波峰时段就有资源浪费。另外,由于在线作业SLA要求较高,为了保证服务的性能和可靠性,通常会申请大量的冗余资源,因此,会导致资

    来自:帮助中心

    查看更多 →

  • 安全组概述

    通用计算型(S1型、C1型、C2型 ) 内存优化型(M1型) 高性能计算型(H1型) 磁盘增强型( D1型) GPU加速型(G1型、G2型) 超大内存型(E1型、E2型、ET2型) 所有鲲鹏 云服务器 规格不支持配置不连续端口。 如果您在鲲鹏 服务器 中添加安全组规则时,使用了不连续端口号,那么除了该条规则不会生效,该规则后的其他规则也不会生效。比如:

    来自:帮助中心

    查看更多 →

  • 设置节点亲和调度(nodeAffinity)

    某些节点支持使用GPU算力,则可以使用节点亲和调度,确保高性能计算的Pod最终运行在GPU节点上。 配置节点亲和调度策略 您可以通过不同的方式配置节点亲和性调度策略,将Pod调度到满足条件的节点。 通过控制台配置 通过YAML配置 本文示例中,集群内已创建GPU节点,并设置标签为

    来自:帮助中心

    查看更多 →

  • GPU实例故障分类列表

    GPU实例故障分类列表 GPU实例故障的分类列表如表1所示。 表1 GPU实例故障分类列表 是否可恢复故障 故障类型 相关文档 可恢复故障,可按照相关文档自行恢复 镜像配置问题 如何处理Nouveau驱动未禁用导致的问题 ECC错误 如何处理ECC ERROR:存在待隔离页问题 内核升级问题

    来自:帮助中心

    查看更多 →

  • 兼容Kubernetes默认GPU调度模式

    兼容Kubernetes默认GPU调度模式 开启GPU虚拟化后,默认该GPU节点不再支持使用Kubernetes默认GPU调度模式的工作负载,即不再支持使用nvidia.com/gpu资源的工作负载。如果您在集群中已使用nvidia.com/gpu资源的工作负载,可在gpu-device-p

    来自:帮助中心

    查看更多 →

  • 手动更新GPU节点驱动版本

    置为GPU插件配置中指定的版本。 如果需要稳定升级GPU节点驱动,推荐使用通过节点池升级节点的GPU驱动版本。 前提条件 需要使用kubectl连接到集群,详情请参见通过kubectl连接集群。 操作步骤 如果您需要使用指定的NVIDIA驱动版本,可以在节点安装新版本GPU驱动,操作步骤如下:

    来自:帮助中心

    查看更多 →

  • Serverless GPU使用介绍

    Serverless GPU使用介绍 概述 应用场景 父主题: GPU函数管理

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    1及以上版本 gpu-device-plugin插件:2.0.0及以上版本 步骤一:纳管并标记GPU节点 如果您的集群中已有符合基础规划的GPU节点,您可以跳过此步骤。 在集群中纳管支持GPU虚拟化的节点,具体操作步骤请参见纳管节点。 纳管成功后,给对应支持GPU虚拟化节点打上“accelerator:

    来自:帮助中心

    查看更多 →

  • 创建GPU虚拟化应用

    创建GPU虚拟化应用 本文介绍如何使用GPU虚拟化能力实现算力和显存隔离,高效利用GPU设备资源。 前提条件 已完成GPU虚拟化资源准备。 如果您需要通过命令行创建,需要使用kubectl连接到集群,详情请参见通过kubectl连接集群。 约束与限制 init容器不支持进行GPU虚拟化。

    来自:帮助中心

    查看更多 →

  • 监控GPU虚拟化资源

    监控GPU虚拟化资源 本章介绍如何在U CS 控制台界面查看GPU虚拟化资源的全局监控指标。 前提条件 完成GPU虚拟化资源准备。 当前本地集群内存在节点开启GPU虚拟化能力。 当前本地集群开启了监控能力。 GPU虚拟化监控 登录UCS控制台,在左侧导航栏选择“容器智能分析”。 选择

    来自:帮助中心

    查看更多 →

  • T4 GPU设备显示异常

    T4 GPU设备显示异常 问题描述 使用NVIDIA Tesla T4 GPU云服务器,例如Pi2或G6规格,执行nvidia-smi命令查看GPU使用情况时,显示如下: No devices were found 原因分析 NVIDIA Tesla T4 GPU是NVIDIA的新版本,默认使用并开启GSP

    来自:帮助中心

    查看更多 →

  • GPU A系列裸金属服务器没有任务但GPU被占用如何解决

    GPU A系列裸金属服务器没有任务但GPU被占用如何解决 问题现象 服务器没有任务,但GPU显示被占用。 图1 显卡运行状态 处理方法 nvidia-smi -pm 1 父主题: Lite Server

    来自:帮助中心

    查看更多 →

  • 如何处理GPU掉卡问题

    a1),请继续按照处理方法处理;如果查找不到显卡或者显示状态为rev ff,请根据显卡故障诊断及处理方法进行故障诊断。规格对应显卡数量可以通过GPU加速型查询。 lspci | grep -i nvidia 处理方法 非CCE集群场景,建议尝试自行重装驱动,或升级驱动版本后执行nvidi

    来自:帮助中心

    查看更多 →

  • 查询规格详情和规格扩展信息列表

    pci_passthrough:gpu_specs String G1型和G2型云服务器应用的技术,包括GPU虚拟化和GPU直通。 如果该规格的云服务器使用GPU虚拟化技术,且GPU卡的型号为M60-1Q,参数值为“m60_1q:virt:1”。 如果该规格的云服务器使用GPU直通技术,且GPU卡的型号

    来自:帮助中心

    查看更多 →

  • 节点规格(flavor)说明

    超高I/O型 i7、i7n、i3、ir7、ir7n、ir3 高性能计算型 h3、hc2 GPU加速型 pi2、pi1 p2s、p2v、p2vs、p1 g6、g5、g6v AI加速型 ai1s、ai1 Flexus云服务器X x1、x1e 鲲鹏(ARM)节点 鲲鹏通用计算增强型 kc1、kc1n、kc2

    来自:帮助中心

    查看更多 →

  • ERROR6203 GPU驱动未启动

    当前节点未启动GPU驱动。GPU驱动未启动。检查GPU当前状态:systemctl status nvidia-drivers-loader若nvidia驱动未启动,则启动nvidia驱动:systemctl start nvidia-drivers-loadersystemctl start nvidia-drivers-loader如

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)版本发布记录

    适配OS Ubuntu22.04 GPU驱动目录自动挂载优化 1.2.24 v1.19 v1.21 v1.23 v1.25 节点池支持配置GPU驱动版本 支持GPU指标采集 1.2.20 v1.19 v1.21 v1.23 v1.25 设置插件别名为gpu 1.2.17 v1.15 v1

    来自:帮助中心

    查看更多 →

  • IP地址组概述

    对于关联IP地址组的安全组,其中IP地址组相关的规则对某些类型的云服务器不生效,不支持的规则如下: 通用计算型(S1型、C1型、C2型 ) 内存优化型(M1型) 高性能计算型(H1型) 磁盘增强型( D1型) GPU加速型(G1型、G2型) 超大内存型(E1型、E2型、ET2型)

    来自:帮助中心

    查看更多 →

  • G系列弹性云服务器GPU驱动故障

    G系列弹性云服务器GPU驱动故障 问题描述 在Windows系统的G系列弹性云服务器中,无法打开NVIDIA 控制面板,GPU驱动无法使用或GPU驱动显示异常。 可能原因 GPU驱动状态异常。 处理方法 打开Windows设备管理器,在显示适配器中查看GPU驱动状态。 GPU驱动显示

    来自:帮助中心

    查看更多 →

  • ERROR6201 无GPU设备

    错误码说明 未检查到当前节点存在GPU设备 可能原因 GPU卡类型不匹配,当前IEF仅支持nvidia的GPU设备 GPU设备节点未检测到 处理措施 非nvidia的GPU卡。 安装IEF软件时,不使能GPU设备,或更换nvidia的GPU卡。 未检测到GPU设备。 尝试重启节点。 父主题:

    来自:帮助中心

    查看更多 →

  • GPU业务迁移至昇腾训练推理

    GPU业务迁移至昇腾训练推理 基于AIGC模型的GPU推理业务迁移至昇腾指导 GPU推理业务迁移至昇腾的通用指导

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了