GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    GPU计算服务器多少钱 更多内容
  • 方案概述

    文件接口方式的数据共享访问:由于 AI 架构需要使用到大规模的计算集群(GPU/NPU 服务器 ),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    文件接口方式的数据共享访问:由于 AI 架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生

    来自:帮助中心

    查看更多 →

  • 资源和成本规划

    资源和成本规划 表1 资源和成本规划 云服务 规格 数量 计费模式 每月费用 说明 弹性 云服务器 规格: X86计算 | GPU加速型 | pi2.8xlarge.4 | 32核 | 128GB 镜像: CentOS | CentOS 8.2 64bit with GRID Driver

    来自:帮助中心

    查看更多 →

  • Lite Server使用流程

    应的裸金属服务器,后续挂载磁盘、绑定弹性网络IP等操作可在BMS服务控制台上完成。 更多裸金属服务器的介绍请见虚拟私有云 VPC。 xPU xPU泛指GPU和NPU。 GPU,即图形处理器,主要用于加速深度学习模型的训练和推理。 NPU,即神经网络处理器,是专门为加速神经网络计算

    来自:帮助中心

    查看更多 →

  • 概述

    用户提供更加便捷、高效的GPU计算服务,有效承载AI模型推理、AI模型训练、音视频加速生产、图形图像加速加速工作负载。 GPU函数主要使用于:仿真、模拟、科学计算、音视频、AI和图像处理等场景下,使用GPU硬件加速,从而提高业务处理效率。 表1 GPU函数规格 卡型 vGPU 显存(GB)

    来自:帮助中心

    查看更多 →

  • 环境准备

    当前支持Nvidia Tesla系列P4、P40、T4等型号GPU。 含有GPU硬件的机器,作为边缘节点的时候可以不使用GPU。 如果边缘节点使用GPU,您需要在纳管前安装GPU驱动。 目前只有使用x86架构的GPU节点才能纳管到IEF中使用。 NPU(可选) 昇腾AI加速处理器。

    来自:帮助中心

    查看更多 →

  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 资源和成本规划

    全动态BGP | 流量 | 100GB 1 94 弹性负载均衡 实例规格类型: 共享型负载均衡 1 94 弹性云服务器 X86计算 | GPU型 | 24核 | 96GB | GPU T4*1 镜像: CentOS | CentOS 7.4 系统盘: 高IO | 500GB 弹性公网IP:

    来自:帮助中心

    查看更多 →

  • 目的端支持的ECS规格有哪些?

    主机迁移 服务只支持迁移X86架构的服务器,华为云E CS 提供的X86架构规格可查看实例类型,其中可以设置为主机迁移服务目的端的实例类型如下: 通用入门型 通用计算型 通用计算增强型 内存优化型 超大内存型 高性能计算型 超高性能计算型 FPGA加速型 AI推理加速GPU加速型 父主题:

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU卡显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

  • GPU实例故障自诊断

    GPU实例故障自诊断 GPU实例故障,如果已安装GPU监控的CES Agent,当GPU服务器出现异常时则会产生事件通知,可以及时发现问题避免造成用户损失。如果没有安装CES Agent,只能依赖用户对故障的监控情况,发现故障后及时联系技术支持处理。 GPU实例故障处理流程 GPU实例故障分类列表

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    CCE AI套件(NVIDIA GPU) 插件介绍 CCE AI套件(NVIDIA GPU)插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic 是 object 插件基础配置参数。

    来自:帮助中心

    查看更多 →

  • gpu-device-plugin

    安装nvidia-fabricmanager服务 A100/A800 GPU支持 NvLink & NvSwitch,若您使用多GPU卡的机型,需额外安装与驱动版本对应的nvidia-fabricmanager服务使GPU卡间能够互联,否则可能无法正常使用GPU实例。 本文以驱动版本470.103

    来自:帮助中心

    查看更多 →

  • GPU插件检查异常处理

    GPU插件检查异常处理 检查项内容 检查到本次升级涉及GPU插件,可能影响新建GPU节点时GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    /nvidia-smi 若能正常返回GPU信息,说明设备可用,插件安装成功。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表2 GPU驱动支持列表 GPU型号 支持集群类型 机型规格

    来自:帮助中心

    查看更多 →

  • Workspace支持的CES操作系统监控指标(安装Agent)

    云桌面 1分钟 gpu_usage_gpu (Agent) GPU使用率 该指标用于统计测量对象当前的GPU使用率。 单位:百分比 采集方式(Linux):通过调用GPU卡的libnvidia-ml.so.1库文件获取。 采集方式(Windows):通过调用GPU卡的nvml.dll库获取。

    来自:帮助中心

    查看更多 →

  • p2服务器安装NVIDIA GPU驱动和CUDA工具包

    p2服务器安装NVIDIA GPU驱动和CUDA工具包 操作场景 GPU加速型p2(physical.p2.large规格)裸金属服务器创建成功后,需安装NVIDIA GPU驱动和CUDA工具包,从而实现计算加速功能。 前提条件 已绑定弹性公网IP。 已下载对应操作系统所需驱动的安装包。

    来自:帮助中心

    查看更多 →

  • 资源和成本规划

    2 GB; 1 135 弹性云服务器 2 X86计算 | GPU加速型 | g6.4xlarge.4 | 16核 | 64GB | 加速卡:1 * NVIDIA T4 / 1 * 16G; CentOS | CentOS 7.9 64bit for GPU; 通用型SSD | 40GB;

    来自:帮助中心

    查看更多 →

  • 开启远程桌面连接功能

    前提条件 已登录创建Windows私有镜像所使用的云服务器。 登录云服务器的详细操作请参见“Windows弹性云服务器登录方式概述”。 操作步骤 开启远程桌面连接功能之前,建议先将云服务器的分辨率设置为1920×1080。 设置方法:在云服务器操作系统单击“开始 > 控制面板”,在“外观

    来自:帮助中心

    查看更多 →

  • 选择GPU节点驱动版本

    选择GPU节点驱动版本 使用GPU加速型云服务器时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了