深度神经网络程序编写 更多内容
  • 编写高效的Dockerfile

    编写高效的Dockerfile 本章基于 容器镜像服务 实践所编写,将一个单体应用进行容器改造为例,展示如何写出可读性更好的Dockerfile,从而提升镜像构建速度,构建层数更少、体积更小的镜像。 下面是一个常见企业门户网站架构,由一个Web Server和一个数据库组成,Web

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 用例描述编写规则

    用例描述编写规则 建议4.1 建议描述测试目的,也可以进行额外的说明,例如用例的测试范围、测试模板等。 父主题: 测试用例编写规范

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS) SQL编写规则

    GaussDB (DWS) SQL编写规则 DDL 【建议】在GaussDB(DWS)中,建议DDL(建表、comments等)操作统一执行,在批处理作业中尽量避免DDL操作。避免大量并发事务对性能的影响。 【建议】在非日志表(unlogged table)使用完后,立即执行数据清

    来自:帮助中心

    查看更多 →

  • Lua脚本编写规范

    Lua脚本编写规范 Lua是一种脚本语言,目的是为了嵌入应用程序中,为应用程序提供灵活的扩展和定制功能。GeminiDB Redis使用的是Lua5.1.5版本,与开源Redis5.0使用的Lua版本是一致的。 使用Lua脚本时,需要经过谨慎的校验,否则可能出现死循环、业务超时等情况,甚至会导致业务不可用。

    来自:帮助中心

    查看更多 →

  • 模型推理代码编写说明

    模型推理代码编写说明 本章节介绍了在ModelArts中模型推理代码编写的通用方法及说明,针对常用AI引擎的自定义脚本代码示例(包含推理代码示例),请参见自定义脚本代码示例。本文在编写说明下方提供了一个TensorFlow引擎的推理代码示例以及一个在推理脚本中自定义推理逻辑的示例。

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS) SQL编写规则

    GaussDB(DWS) SQL编写规则 DDL 【建议】在GaussDB(DWS)中,建议DDL(建表、comments等)操作统一执行,在批处理作业中尽量避免DDL操作。避免大量并发事务对性能的影响。 【建议】在非日志表(unlogged table)使用完后,立即执行数据清

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 什么是内容审核

    内容审核 以开放API(Application Programming Interface,应用程序编程接口)的方式提供给用户,用户通过调用API获取推理结果,帮助用户打造智能化业务系统,提升业务效率。 内容审核-图像 图像内容审核,利用深度神经网络模型对图片内容进行检测,准确识别图像中的暴恐元素、涉黄内容等,帮助业务规避违规风险。

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、语音识别、 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 测试用例编写规范

    测试用例编写规范 用例总体规范 用例命名规则 用例编号规则 用例描述编写规则 测试类型选择规则 测试用例等级选择规则 用例前置条件、测试步骤、预期结果文字表达规则

    来自:帮助中心

    查看更多 →

  • 是否支持Keras引擎?

    是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本

    来自:帮助中心

    查看更多 →

  • 模型配置文件编写说明

    模型配置文件编写说明 模型开发者发布模型时需要编写配置文件config.json。模型配置文件描述模型用途、模型计算框架、模型精度、推理代码依赖包以及模型对外API接口。 配置文件格式说明 配置文件为JSON格式,参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 描述

    来自:帮助中心

    查看更多 →

  • 功能列表

    提供TOP机型,覆盖98%主流机型;快速上新、快速上线主流机型。 全自动化测试 无需人工编写用例,只需提交Android、iOS应用安装文件,选取测试套餐,即可输出详尽测试报告。 深度兼容性测试 深入测试包括UI异常、闪退、卡死、程序异常、黑屏等兼容性问题。 详细的测试报告 详尽在线测试报告,支持一键

    来自:帮助中心

    查看更多 →

  • Lite Server使用流程

    BMS。 xPU xPU泛指GPU和NPU。 GPU,即图形处理器,主要用于加速深度学习模型的训练和推理。 NPU,即神经网络处理器,是专门为加速神经网络计算而设计的硬件。与GPU相比,NPU在神经网络计算方面具有更高的效率和更低的功耗。 密钥对 弹性裸金属支持SSH密钥对的方式进

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于信

    来自:帮助中心

    查看更多 →

  • 功能介绍

    产品优势 识别准确率高 采用最新一代语音识别技术,基于深度神经网络(Deep Neural Networks,简称DNN)技术,大大提高了抗噪性能,使识别准确率显著提升。 识别速度快 把语言模型、词典和声学模型统一集成为一个大的神经网络,同时在工程上进行了大量的优化,大幅提升解码速度,使识别速度在业内处于领先地位。

    来自:帮助中心

    查看更多 →

  • 测试报告编写注意事项

    测试报告编写注意事项 测试报告对测试的过程和结果,也就是测试计划的完成情况进行总结,分析发现的问题,给出产品质量依据,为相关人提供验收和交付决策依据。测试报告一般包含测试概述、测试范围和功能清单、测试策略和方法描述、测试指标统计和分析评价、测试风险分析和披露、质量评价和发布建议等。

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了