基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    规则推理引擎代码 更多内容
  • 创建推理作业

    创建推理作业 功能介绍 创建科学计算大模型中海洋类模型的推理作业。 URI POST /tasks 科学计算大模型的API请求地址可以直接在ModelArts Studio大模型开发平台获取: 登录ModelArts Studio大模型开发平台,进入所需空间。 获取调用路径及部署ID。单击左侧“模型开发

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码推理评测代码推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码推理评测代码推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    空间。不同模型推理支持的max-model-len长度不同,具体差异请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明。 --trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite k8s Cluster上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    905-xxx.zip代码包已包含数据集。 精度测试使用的是openai接口,部署服务的时候请使用openai-api启动,暂不支持vllm-api接口。 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM的/llm_evaluation目录中,代码目录结构如下:

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    空间。不同模型推理支持的max-model-len长度不同,具体差异请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明。 --trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite k8s Cluster上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC

    来自:帮助中心

    查看更多 →

  • 发布推理服务

    发布推理服务 模型训练服务支持一键发布在线推理服务。用户基于成熟的模型包,创建推理服务,直接在线调用服务得到推理结果。操作步骤如下。 单击模型包“操作”列的,弹出“发布推理服务”对话框,如图1所示。 图1 推理服务 配置对话框参数如表1所示。 表1 创建推理服务参数配置 参数名称

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码推理评测代码推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    --trust-remote-code:是否相信远程代码。 --distributed-executor-backend:多卡推理启动后端,可选值为"ray"或者"mp",其中"ray"表示使用ray进行启动多卡推理,"mp"表示使用python多进程进行启动多卡推理。默认使用"mp"后端启动多卡推理。 高阶参数说明:

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    els at Evaluation)。 步骤一:配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。目前使用的opencompass版本是0.2.6 benchmark_eval

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    ASCEND_RT_VISIBLE_DEVICES=0,1 使用Opencompass精度测评工具 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。目前使用的opencompass版本是0.2.6 benchmark_eval

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了