无服务器图片生成缩略图

无服务器图片生成缩略图

    c语言bmp图片识别文字 更多内容
  • 提取图片中的文字暗水印(文件地址版本)

    提取图片中的文字暗水印(文件地址版本) 功能介绍 对指定存储地址信息(目前支持OBS)的已嵌入文字暗水印的图片提取文字暗水印,支持的图片格式为:*.jpg, *.jpeg, *.jpe, *.png, *.bmp, *.dib, *.rle, *.tiff, *.tif, *.ppm

    来自:帮助中心

    查看更多 →

  • 车辆合格证识别

    车辆合格证识别 功能介绍 识别车辆合格证中的文字信息,并返回识别的结构化结果。 约束与限制 只支持中国大陆车辆合格证的识别。 只支持识别PNG、JPG、JPEG、BMP、TIFF格式的图片。 图像各边的像素大小在15到8192px之间。 图像中识别区域有效占比超过80%,保证整张车辆合格证内容及其边缘包含在图像内。

    来自:帮助中心

    查看更多 →

  • 户口本识别

    户口本识别 功能介绍 识别户口本中的文字信息,并返回识别的结构化结果。该接口的使用限制请参见约束与限制,详细使用指导请参见OCR服务使用简介章节。 该接口的使用限制请参见约束与限制,详细使用指导请参见OCR服务使用简介章节。 约束与限制 只支持识别PNG、JPG、JPEG、BMP、TIFF格式的图片。

    来自:帮助中心

    查看更多 →

  • 准备数据

    服务前参考约束准备好待识别的数据。 服务功能的使用约束请参见约束与限制。 例如媒资图像标签,输入数据存在以下约束: 支持“华北-北京四”区域。 支持识别处理PNG、JPEG、BMP、WEBP格式的图片。 图像各边的像素大小在1px至10000px之间。 图片base64编码后大小不超过10MB(原图像大小不超过7

    来自:帮助中心

    查看更多 →

  • 图片类数据集格式要求

    式示例如下: 图片+QA对 图片支持tar,QA对支持jsonl 图片+QA对是指将一张图片和与之相关的问题及答案配对在一起,用于训练模型让其能够理解图片内容并回答与图片相关的问题。 图片图片以tar包格式存储,可以多个tar包。tar包存储原始的图片,每张图片命名要求唯一(如abc

    来自:帮助中心

    查看更多 →

  • 通用类

    功能介绍 通用表格识别 提取表格内的文字和所在行列位置信息,适应不同格式的表格。同时也识别表格外部的文字区域。用于各种单据和报表的电子化,恢复结构化信息。 通用文字识别 提取图片内的文字及其对应位置信息,并能够根据文字图片中的位置进行结构化整理工作。 手写文字识别 识别文档中的手写文

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    详细指导 上传模板图片 在使用多模板工作流开发应用之前,需要上传模板图片,明确以哪些图片作为模板训练文字识别模型。 上传模板图片 定义预处理 上传模板图片后,需要对模板图片进行预处理,去掉冗余部分,将图片旋转至水平,保证模型识别的准确性。 定义预处理 框选参照字段 在图片模板中框选参照

    来自:帮助中心

    查看更多 →

  • 如何选购合适的API

    通用文字识别 :提取图片内的文字及其对应位置信息。 手写文字识别识别手写文字、印刷文字信息。 网络图片识别识别网络图片内的所有文字及其对应位置信息。 证件类 身份证识别、护照识别、银行卡识别 驾驶证识别、行驶证识别、道路运输证识别、车牌识别、VIN码识别 营业执照识别、名片识别 票据类 增值税发票识

    来自:帮助中心

    查看更多 →

  • 准备数据

    设计车牌标签 首先需要考虑好车牌的标签类型,即希望识别图片中车牌的一种结果。例如“plate”。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。

    来自:帮助中心

    查看更多 →

  • 企业级AI应用开发专业套件 ModelArts Pro

    VPC服务介绍【视频】 OBS 2.0支持文字识别套件 文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。传统方式开发文字识别应用需要7天,使用文字识别套件完成新版式票证结构化提取接口开发仅需3分钟。

    来自:帮助中心

    查看更多 →

  • 解读识别结果

    图片中的文字块数目、文字块排列顺序、具体文本内容、所在位置、置信度等信息。 result字段仅在API调用成功后返回。 words_block_count表示文字识别结果,本示例中,识别出2个文字块,分别代表图片中的2行文字。 words_block_list表示文字块列表,按照图片文字从上到下、从左到右排列。

    来自:帮助中心

    查看更多 →

  • 评估应用

    图片区域,上传本地的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“在线URL”,切换至“在线URL”页签。在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域,上传在线图片作为测试图片。

    来自:帮助中心

    查看更多 →

  • 创建信息模板并实名认证(企业)

    有国徽的证件,必须保证国徽为红色且清晰完整。 格式: 必须为jpg、jpeg、png、bmp格式。 如果认证材料不是要求的格式,请勿直接修改文件类型后缀,需使用系统自带画图工具、Photoshop等工具将图片打开后另存为“.jpg”或“.bmp”等格式的文件。 大小: 必须在55KB~5MB之间。 如果实

    来自:帮助中心

    查看更多 →

  • 框选识别区

    框选识别区 在文字识别过程中,需要确定图片识别文字位置,这就需要在图片模板中框选识别区。 识别区指图片中待识别文字位置。所有需要识别图片中都会包含此识别区的字段,且位置固定不变,因此模型可以通过识别区找到需要识别内容的位置。 前提条件 已在自定义OCR控制台选择“多模板分

    来自:帮助中心

    查看更多 →

  • 框选参照字段

    框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。

    来自:帮助中心

    查看更多 →

  • 标签识别

    接口响应时间依赖于图片的下载时间,如果图片下载时间过长,会返回接口调用失败。 请保证被检测图片所在的存储服务稳定可靠,推荐使用OBS服务存储图片数据。 lmage不支持跨区域OBS,OBS的区域需要和服务保持一致。 language 否 String zh:返回标签的语言类型为中文。 en:返回标签的语言类型为英文。

    来自:帮助中心

    查看更多 →

  • 什么是ModelArts Pro

    政务场景 零售场景 构建商品视觉自动识别的模型,可用于无人超市、蛋糕生鲜识别等场景。随着商品种类的更新,收银员即可迭代更新模型。 特点:构建商品视觉自动识别的模型,可用于无人超市等场景。 优势:用户自定义模型可以实现99.5%的识别准确率,可以实现秒级识别整盘商品,从而提升结算效率。模

    来自:帮助中心

    查看更多 →

  • 评估

    上传测试图片或者上传在线图片,评估模板。 图4 评估模板 本地上传图片 默认进入“本地上传”页签,单击“上传图片”,或者拖拽测试图片至虚线框内上传图片区域,上传本地的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“

    来自:帮助中心

    查看更多 →

  • 准备数据

    ”等分别作为一个蛋糕的种类。零售商品识别工作流可以识别出单张图片中的多个商品。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。

    来自:帮助中心

    查看更多 →

  • 框选参照字段

    框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。

    来自:帮助中心

    查看更多 →

  • 框选参照字段

    框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了