智能边缘平台 IEF

智能边缘平台(Intelligent EdgeFabric)是基于云原生技术构建的边云协同操作系统,可运行在多种边缘设备上,将丰富的AI、IoT及数据分析等智能应用以轻量化的方式从云端部署到边缘,满足用户对智能应用边云协同的业务诉求

 
 

    物联网的安全模型 更多内容
  • 模型管理

    模型管理 在模型管理界面,可以将归档模型,打包成模型包。 在菜单栏中,单击“模型管理”,进入“模型管理”界面。 单击界面右上角“新建模型包”,弹出“新建模型包”对话框。 请根据实际情况,修改模型名称、模型版本、模型描述等信息,并勾选归档学件模型“Learnware”。 单击

    来自:帮助中心

    查看更多 →

  • 模型验证

    验证配置 单击“保存”,返回模型验证代码编辑界面。 单击界面右上角“关闭”图标,返回到验证任务详情界面。 如果需要修改验证配置,可以单击界面右上方图标,在弹出对话框中,修改配置参数。 单击界面右上方图标,在弹出“创建验证任务”对话框内,设置模型包名称,如图3所示。 图3 创建验证任务

    来自:帮助中心

    查看更多 →

  • 模型训练

    AutoML任务的模型优化指标,请根据实际情况选择。 验证数据集 模型验证数据集。 测试数据集 模型测试数据集。 被忽略列 数据集中不需要参与模型训练无用列。 包含模型 模型训练使用算法列表。 交叉验证折数 交叉检验折数。如果不使用交叉验证方法,请将该参数置为空。 K折交叉验证含义:将数据集等比例划分成K

    来自:帮助中心

    查看更多 →

  • 资产模型

    资产模型 创建资产模型 获取资产模型列表 获取资产模型详情 修改资产模型 删除资产模型 父主题: API列表

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练新建模型训练工程时候,选择通用算法有什么作用? 使用训练模型进行在线推理推理入口函数在哪里编辑? 通过数据集导入数据后,在开发代码中如何获取这些数据? 如何在模型训练时,查看镜像中Python库版本? 如何在模型训练时,设置日志级别? 如何自定义安装python第三方库?

    来自:帮助中心

    查看更多 →

  • 模型推理

    返回值为0即成功,其他即失败,失败响应参数如错误码所示。 如果推理实际输入与模型输入大小不一致,推理将会失败。此时infer返回值将是一个int错误码,日志会报出错误信息,开发者可以通过错误信息来定位错误。 父主题: 模型管理

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练简介 创建模型训练工程 创建联邦学习工程 创建训练服务 创建超参优化服务 创建Tensorboard 打包训练模型 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 模型训练

    自定义引擎 通过引擎镜像地址自定义增加引擎。 主入口 训练任务入口文件及入口函数。 计算节点规格 模型训练服务提供计算节点资源,包括CPU和GPU。 用户可以单击选定计算节点资源,并在“计算节点个数”中配置计算节点资源个数。 计算节点个数 计算节点个数。 1代表单节点计算

    来自:帮助中心

    查看更多 →

  • 分词模型

    座两层小木屋,和这里大部分木质吊脚楼一样,小木屋依山而建。但这座木屋又很“特别”,它有一个“山东哥哥助学工作站”名字。这座木屋,凝聚了“山东哥哥”与贵州山区儿童之间情谊,也见证了一位名叫隋刚淄博“80后”小伙18年来坚守。", "绝大多数用户需求往往

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练 如果您缺少自有模型训练平台,可以基于ModelArts进行模型在线训练。 根据场景选择适用摄像机。 在首页导航栏,进入“选择摄像机型号”页面。 通过不同条件筛选摄像机,单击选择需要摄像机(如X2221-VI),摄像机相关信息将显示在右侧摄像机详情窗口

    来自:帮助中心

    查看更多 →

  • 评估模型

    评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意模型,需要反复调整算法、数据,不断评估训练生成模型。 一些常用指标,如精准率、召回率、F1值等,能帮助您有效评估,最终获得一个满意模型。 前提条件 已在视觉套件控制台选

    来自:帮助中心

    查看更多 →

  • 训练模型

    建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步

    来自:帮助中心

    查看更多 →

  • 训练模型

    建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步

    来自:帮助中心

    查看更多 →

  • 评估模型

    评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意模型,需要反复调整算法、数据,不断评估训练生成模型。 一些常用指标,如精准率、召回率、F1值等,能帮助您有效评估,最终获得一个满意模型。 前提条件 已在视觉套件控制台选

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练详情 模型如何提升效果 检查是否存在训练数据过少情况,建议每个标签样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。

    来自:帮助中心

    查看更多 →

  • 评估模型

    评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。往往不能一次性获得一个满意模型,需要反复调整算法参数、数据,不断评估训练生成模型。 一些常用指标,如精准率、召回率、F1值等,能帮助您有效评估,最终获得一个满意模型。 前提条件 已在自然语言

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开

    来自:帮助中心

    查看更多 →

  • 训练模型

    据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发模型评估”步骤,详细操作指引请参见评估模型。 父主题: 无监督车牌检测工作流

    来自:帮助中心

    查看更多 →

  • 评估模型

    评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意模型,需要反复调整算法、数据,不断评估训练生成模型。 一些常用指标,如精准率、召回率、F1值等,能帮助您有效评估,最终获得一个满意模型。 前提条件 已在视觉套件控制台选

    来自:帮助中心

    查看更多 →

  • 用户模型

    企业用户是指具体使用IMC平台企业员工,由企业管理员通过IMC管理后台创建用户时添加。 企业用户如果被授权访问SparkPack 企业ERP应用,则该企业用户具有访问SparkPack 企业ERP权限。 ERP管理员 ERP管理员是由企业管理员在IMC管理后台给企业用户应用授

    来自:帮助中心

    查看更多 →

  • 物理模型

    填写物理表信息 编辑物理表:单击右侧表格中“编辑”,跳转进入编辑物理表页面。 图8 编辑物理表-1 图9 编辑物理表-2 批量导入:批量物理表信息填入下载模板后上传,完成批量导入。 图10 批量导入-1 图11 批量导入-2 批量删除:批量删除所勾选物理表,默认置灰。 图12 批量删除

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了