数据湖探索 DLI

数据湖探索(Data Lake Insight,简称DLI)是完全兼容Apache Spark和Apache Flink生态, 实现批流一体的Serverless大数据计算分析服务。DLI支持多模引擎,企业仅需使用SQL或程序就可轻松完成异构数据源的批处理、流处理、内存计算、机器学习等,挖掘和探索数据价值

 
进入控制台立即购买帮助文档DLI开发者社区1对1咨询                
               

           

    学习Spark 更多内容
  • Spark client CLI介绍

    1/install/ FusionInsight -Spark2x-3.1.1/keytab/spark2x/SparkResource/spark2x.keytab --master yarn spark-submit 用于提交Spark应用到Spark集群中运行,返回运行结果。需要指定class、master、jar包以及入参。

    来自:帮助中心

    查看更多 →

  • 开发一个DLI Spark作业

    bs://dlfexample”,用于存放Spark作业的JAR包。 已开通 数据湖探索 服务 DLI ,并创建Spark集群“spark_cluster”,为Spark作业提供运行所需的物理资源。 获取Spark作业代码 本示例使用的Spark作业代码来自maven库(下载地址:https://repo

    来自:帮助中心

    查看更多 →

  • Spark client CLI介绍

    1/install/FusionInsight-Spark2x-3.1.1/keytab/spark2x/SparkResource/spark2x.keytab --master yarn spark-submit 用于提交Spark应用到Spark集群中运行,返回运行结果。需要指定class、master、jar包以及入参。

    来自:帮助中心

    查看更多 →

  • DLI作业开发流程

    Spark作业。 适用于大规模数据处理和分析,如机器学习训练、 日志分析 、大规模数据挖掘等场景。 管理Jar作业的程序包 DLI允许用户提交编译为Jar包的Flink或Spark作业,Jar包中包含了Jar作业执行所需的代码和依赖信息,用于在数据查询、数据分析、机器学习等特定的数

    来自:帮助中心

    查看更多 →

  • 创建自动学习项目有个数限制吗?

    创建自动学习项目有个数限制吗? ModelArts自动学习,包括图像分类项目、物体检测项目、预测分析项目、声音分类和文本分类项目。您最多只能创建100个自动学习项目。 父主题: 创建项目

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • spark提交服务

    spark提交服务 服务分布: 表1 服务分布 服务名 服务器 安装目录 端口 data-spark-submit 10.190.x.x 10.190.x.x /app/dt/data-spark-submit 8087 安装spark提交服务 修改配置文件application-dev

    来自:帮助中心

    查看更多 →

  • Spark作业相关

    18 def submit_spark_batch_job(dli_client, batch_queue_name, batch_job_info): try: batch_job = dli_client.submit_spark_batch_job(batch_queue_name

    来自:帮助中心

    查看更多 →

  • MRS Spark Python

    MRS Spark Python 功能 通过MRS Spark Python节点实现在MRS中执行预先定义的Spark Python作业。 MRS Spark Python算子的具体使用教程,请参见开发一个MRS Spark Python作业。 参数 用户可参考表1,表2和表3配置MRS

    来自:帮助中心

    查看更多 →

  • 开发Spark应用

    开发Spark应用 Spark Core程序 Spark SQL程序 Spark Streaming程序 通过JDBC访问Spark SQL的程序 Spark on HBase程序 从HBase读取数据再写入HBase 从Hive读取数据再写入HBase Streaming从Kafka读取数据再写入HBase

    来自:帮助中心

    查看更多 →

  • Spark Core程序

    Spark Core程序 场景说明 Java样例代码 Scala样例代码 Python样例代码 父主题: 开发Spark应用

    来自:帮助中心

    查看更多 →

  • Spark接口介绍

    Spark接口介绍 Spark Java API接口介绍 Spark Scala API接口介绍 Spark Python接口介绍 Spark REST API接口介绍 Spark ThriftServer接口介绍 Spark常用命令介绍 父主题: Spark应用开发常见问题

    来自:帮助中心

    查看更多 →

  • 创建Spark作业

    创建Spark作业 Spark作业编辑页面支持执行Spark作业,为用户提供全托管式的Spark计算服务。 在总览页面,单击Spark作业右上角的“创建作业”,或在Spark作业管理页面,单击右上角的“创建作业”,均可进入Spark作业编辑页面。 进入Spark作业编辑页面,页面

    来自:帮助中心

    查看更多 →

  • 开发Spark应用

    开发Spark应用 Spark Core样例程序 Spark SQL样例程序 通过JDBC访问Spark SQL样例程序 Spark读取HBase表样例程序 Spark从HBase读取数据再写入HBase样例程序 Spark从Hive读取数据再写入HBase样例程序 Spark S

    来自:帮助中心

    查看更多 →

  • 如何用ModelArts训练基于结构化数据的模型?

    针对一般用户,ModelArts提供自动学习的预测分析场景来完成结构化数据的模型训练。 针对高阶用户,ModelArts在开发环境提供创建Notebook进行代码开发的功能,在训练作业提供创建大数据量训练任务的功能;用户在开发、训练流程中使用Scikit_Learn、XGBoost或Spark_MLlib引擎均可。

    来自:帮助中心

    查看更多 →

  • 实验对我课程学习有什么帮助?

    实验对我课程学习有什么帮助? 每个微认证的实验与课程相匹配,通过实验的实践操作与练习可以加深课程学习与理解,获得场景化的技能提升。 父主题: 微认证实验常见问题

    来自:帮助中心

    查看更多 →

  • 查询联邦学习作业列表

    查询联邦学习作业列表 功能介绍 查询联邦学习作业列表 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String

    来自:帮助中心

    查看更多 →

  • 查询联邦学习作业列表

    查询联邦学习作业列表 功能介绍 查询联邦学习作业列表 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String

    来自:帮助中心

    查看更多 →

  • 重新学习服务器

    重新学习服务器 如果已完成进程白名单扩展,但仍然存在较多可信进程运行误报或您的服务器业务存在变更,您可以设置HSS重新学习服务器,校准HSS的应用进程情报数据,避免误报。 重新学习服务器 登录管理控制台。 在页面左上角选择“区域”,单击,选择“安全与合规 > 企业主机安全”,进入主机安全平台界面。

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    用户可以根据训练报告结果对代码进行调优再训练,直到得到最优的训练代码。 新建联邦学习工程:创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。

    来自:帮助中心

    查看更多 →

  • Spark性能优化

    Spark性能优化 概述 Spark是基于内存的分布式计算框架。在迭代计算的场景下,数据处理过程中的数据可以存储在内存中,提供了比MapReduce高10到100倍的计算能力。Spark可以使用HDFS作为底层存储,使用户能够快速地从MapReduce切换到Spark计算平台上去

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了