经销商伙伴计划

具有华为云的售前咨询、销售、服务能力,将华为云销售给最终用户的合作伙伴

 

 

 

    bp神经网络回归预测 更多内容
  • 发起联邦预测

    中。这个预测作业可以作为后续持续预测的依据,企业A可以定期地使用模型预测自己的新业务数据。同时企业A也可以根据新积累的数据训练出新的模型,进一步优化模型预测的精确率,再创建新的联邦预测作业,产出更精准的预测结果供业务使用。 父主题: 使用 TICS 联邦预测进行新数据离线预测

    来自:帮助中心

    查看更多 →

  • 分子属性预测

    分子属性预测 基于盘古药物分子大模型,预测化合物ADMET相关的80多种成药属性,有些属性的预测值会给出置信区间,更好地辅助分子设计。 单击“分子属性预测”功能卡片,进入配置页面。 图1 小分子配置页面 在配置页面输入分子信息,及配置相关参数。 输入方式:支持绘制分子、选择文件、手动输入。

    来自:帮助中心

    查看更多 →

  • 排序策略

    。 逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。单击查看逻辑斯蒂回归详情信息。 表1

    来自:帮助中心

    查看更多 →

  • 在线服务预测时,如何提高预测速度?

    在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“计算节点规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“计算节点个数”。 如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。

    来自:帮助中心

    查看更多 →

  • 执行批量预测作业

    在“联邦预测”页面批量预测Tab页,查找待执行的作业,单击“发起预测”,在系统弹窗中填写“分类阈值”,勾选数据集发起联邦预测。 如果在创建联邦预测作业 步骤4中勾选的模型不包含标签方特征,联邦预测支持只勾选己方数据集发起单方预测。 图1 发起预测 图2 勾选数据集 在“联邦预测”页面批量预测Tab

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称 说明 名称 自定义

    来自:帮助中心

    查看更多 →

  • 查询联邦学习作业列表

    String 纵向联邦算法类型枚举。 XG_BOOST, LightGBM LOG ISTIC_REGRESSION 逻辑回归 NEURAL_NETWORK 神经网络 FIBINET, learning_task_type String 纵向联邦任务类型。 CLASSIFICATION(1)

    来自:帮助中心

    查看更多 →

  • 预测性维护功能

    预测性维护功能 设备概览操作 登录数字孪生管理控制台。 单击左半侧目录“设备概览统计”。 图1 设备概览统计 预测设备台账操作 登录数字孪生管理控制台。 单击左半侧目录“预测设备台账”。 单击页面右侧页面内容左上方“添加”,进入“添加预测设备台账”页面。 图2 添加预测设备台账1

    来自:帮助中心

    查看更多 →

  • 查看预测外呼

    查看预测外呼 前提条件 管理员已为指定座席人员建立预测外呼任务,并启动任务。 座席处于空闲态,预测外呼配有外呼数据且已经启动。 操作步骤 外呼业务代表进入云联络中心,输入账号、密码登录。 选择“外呼任务 > 座席外呼任务”。 图1 外呼任务 点击外呼结果,可查看外呼结果。 表1 预测外呼结果提示元素说明

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    ModelArts数据集。 “标签列” 可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    String 纵向联邦算法类型枚举,XG_BOOST,LIGHT_BGM,LOGISTIC_REGRESSION 逻辑回归,NEURAL_NETWORK 神经网络,FIBINET work_step String 纵向联邦操作步骤枚举值。DATA_SELECTION.数据选择,SAMPLE_ALIGNMENT

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    String 纵向联邦算法类型枚举,XG_BOOST,LIGHT_BGM,LOGISTIC_REGRESSION 逻辑回归,NEURAL_NETWORK 神经网络,FIBINET work_step 否 String 纵向联邦操作步骤枚举值。DATA_SELECTION.数据选择

    来自:帮助中心

    查看更多 →

  • 创建实时预测作业

    实时预测作业必须选择训练FiBiNet模型的参与方计算节点发布的数据集。 创建训练模型时参数必须有"save_format": "SAVED_MODEL"。 创建联邦预测作业 实时预测作业在本地运行,目前仅支持深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理

    来自:帮助中心

    查看更多 →

  • 使用TICS联邦预测进行新数据离线预测

    使用TI CS 联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

  • 使用时序预测算法实现访问流量预测

    在线服务 步骤7:在线预测 在“部署上线 > 在线服务”管理页面,单击在线服务名称,进入在线服务详情页面。 在线服务详情页面中,切换到 “预测“ 页签,单击“上传”,从本地上传待预测数据,格式参考算法说明。 本地上传数据完成后,单击“预测”,开始预测。 图9 预测结果 步骤8:清除资源

    来自:帮助中心

    查看更多 →

  • 预测接口(文本标签)

    预测接口(文本标签) 分词模型 命名实体识别模型 父主题: 在线服务API

    来自:帮助中心

    查看更多 →

  • 分子属性预测(MPP)

    分子属性预测(MPP) ADMET属性预测接口 ADMET属性预测接口(默认+自定义属性) 父主题: API(AI辅助药物设计)

    来自:帮助中心

    查看更多 →

  • 准备预测分析数据

    得到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、

    来自:帮助中心

    查看更多 →

  • 重保风险预测

    重保风险预测 使用场景 仅白名单用户可以使用重保风险预测。 操作步骤 登录管理控制台。 选择“服务列表 > 管理与监管 > 优化顾问”优化顾问服务页面。 左侧导航树选择“容量优化 > 重保风险预测”。 单击“风险分析”进行风险预测配置。 批量参数设置,选择活动时间段。 配置容量阈

    来自:帮助中心

    查看更多 →

  • 联邦预测作业

    联邦预测作业 概述 批量预测 实时预测 查看作业计算过程和作业报告

    来自:帮助中心

    查看更多 →

  • ADMET属性预测接口

    ADMET属性预测接口 功能介绍 计算小分子的物化性质,包括吸收(adsorption)、分布(distribution)、代谢(metabolism)、清除(excretion)与毒性(toxicity)。 URI POST /v1/{project_id}/admet 表1 路径参数

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了