tensorflow人脸检测 更多内容
  • 华为HiLens支持的模型必须是ModelArts训练出的模型吗?

    om”格式。 并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 ModelArts训练模型 华为HiLens支持在ModelArts训练自己的算法

    来自:帮助中心

    查看更多 →

  • 产品咨询类

    如何在含有多张人脸的图片中实现多 人脸识别 人脸识别是否可使用证件类照片 如何处理未经授权的情况 为什么会出现识别错误的情况 为什么人脸识别通过率低 为什么会请求响应过慢 人脸检测接口可以免费调多少次 如何关闭已申请的服务 调用静默活体检测API,为什么在服务管理页面看不到调用量 人脸识别服务 是否支持私有化部署 人

    来自:帮助中心

    查看更多 →

  • 模型推理代码编写说明

    "images":"base64 encode image" } TensorFlow的推理脚本示例 TensorFlow MnistService示例如下。更多TensorFlow推理代码示例请参考TensorflowTensorflow2.1。 推理代码 1 2 3 4 5 6

    来自:帮助中心

    查看更多 →

  • 如何关闭Mox的warmup

    如何关闭Mox的warmup 问题现象 训练作业mox的Tensorflow版本在运行的时候,会先执行“50steps” 4次,然后才会开始正式运行。 warmup即先用一个小的学习率训练几个epoch(warmup),由于网络的参数是随机初始化的,如果一开始就采用较大的学习率会出现数值不稳定的问题,这是使用warm

    来自:帮助中心

    查看更多 →

  • 在开发环境中部署本地服务进行调试

    端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,不建议进行模型的工业应用。 当前版本支持部署本地服务Predictor的AI引擎为:“XGBoost”、“Scikit_Learn”、“PyTorch”、“TensorFlow”和“S

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Kubeflow

    在CCE集群中部署使用Kubeflow Kubeflow部署 Tensorflow训练 使用Kubeflow和Volcano实现典型AI训练任务 父主题: 批量计算

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    目前不支持的AI引擎,可以通过 自定义镜像 的方式将编写的模型镜像导入ModelArts,创建为模型,用于部署服务。 从AI Gallery订阅模型:ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,您可订阅AI Gallery上的模型进行AI体验学习。 推理支持的AI引擎

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • 环境准备

    安装GPU驱动并将GPU驱动文件拷贝到边缘节点指定目录下。 在园区人脸检测场景中,需要使用边缘节点上的GPU能力,所以需要提前在边缘节点上安装GPU驱动,缺少GPU驱动会导致人脸识别算法下发失败。 具体操作请参见拷贝GPU驱动文件。 购买DIS通道。 人脸检测场景中,选择DIS作为数据传输通道,将边缘侧

    来自:帮助中心

    查看更多 →

  • 模型转换失败怎么办?

    om”格式的模型上传文件包含caffe模型文件“.caffemodel”和“.prototxt”和配置文件“.cfg”,或tensorflow的“.pb”模型文件和配置文件“.cfg”。 确认待转换的模型算子是否为“.om”模型支持的TensorFlowCaffe算子边界 并非所有模型

    来自:帮助中心

    查看更多 →

  • 模型包结构介绍

    vice.py依赖的文件可以直接放model目录下 Custom模型包结构,与您自定义镜像中AI引擎有关。例如自定义镜像中的AI引擎TensorFlow,则模型包采用TensorFlow模型包结构。 父主题: 创建模型规范参考

    来自:帮助中心

    查看更多 →

  • 如何在含有多张人脸的图片中实现多人脸识别

    当前人脸识别服务中,如果传入的图片中包含多个人脸,则只能选取最大的一个人脸进行识别。但是可以使用如下方法,实现一张图片中多张人脸的识别(比对/搜索): 调用人脸检测接口,可以得到多张人脸在图片中的像素位置。 通过获取到的人脸位置信息,从原图中将人脸图片截出,可以参考多人脸识别Demo。 再调用人脸识别接口,实现多人脸的比对/搜索。

    来自:帮助中心

    查看更多 →

  • 预置商用技能简介

    的技能,也提供官方的预置技能供您购买使用。本章节主要介绍技能市场中预置的商用技能相关描述、基本信息、运行时配置参数和技能结果上传接口。 人脸检测技能:面向智慧商超的人脸采集技能。 多区域客流分析技能:面向智慧商超的客流统计技能。 车牌识别技能:面向智慧商超的车牌判断技能。 安全帽

    来自:帮助中心

    查看更多 →

  • 批量计算

    在CCE集群中部署使用Kubeflow 在CCE集群中部署使用Caffe 在CCE集群中部署使用Tensorflow 在CCE集群中部署使用Flink 在CCE集群中部署使用ClickHouse 在CCE集群中部署使用Spark

    来自:帮助中心

    查看更多 →

  • 华为人脸识别

    myhuaweicloud.com 人脸检测 人脸检测是对输入图片进行人脸检测和分析,输出人脸在图像中的位置、人脸关键属性。如果照片中存在多张人脸,则返回所有符合条件的人脸特征信息。 接口功能及调用方法请参考人脸检测。 输入参数 用户配置人脸检测执行动作,相关参数说明如表3所示。 表3 人脸检测输入参数说明

    来自:帮助中心

    查看更多 →

  • 开发环境的应用示例

    "CPU and GPU general algorithm development and training, preconfigured with AI engine PyTorch1.8", "dev_services": [ "NOTEBOOK", "SSH"

    来自:帮助中心

    查看更多 →

  • 模型转换及打包

    。 选择转换方式为Tensorflow。 选择.meta、.index和.data格式的文件,单击“配置”,配置Tensorflow参数,并单击“确定”。 单击“转换”,可转换得到caffe和prototxt文件,文件可以下载到本地。 使用转换成功的caffe和prototxt文

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如TensorflowSpark MLlibMXNetPyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 替换TFJob

    "template": { "spec": { "containers": [ {

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    metrics=['accuracy']) # training model.fit(train_images, train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 导入(转换)模型

    om”格式。 并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 前提条件 在导入模型前,导入的模型可通过ModelArts在线训练,也可通过本地训练。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了