AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    ai模型训练 cpu 更多内容
  • 训练声音分类模型

    F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练模型达到目标后,再执行模型部署的操作。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    后等待工作流按顺序进入训练节点。 模型将会自动进入训练,无需人工介入,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 在“文本分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 图2 运行成功 训练完成后,您可以单击文本

    来自:帮助中心

    查看更多 →

  • 管理AI Gallery模型

    管理AI Gallery模型 编辑模型介绍 资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在模型详情页,选择“模型介绍”页签,单击右侧“编辑介绍”。 编辑模型基础设置和模型描述。 表1 模型介绍的参数说明 参数名称 说明 基础设置

    来自:帮助中心

    查看更多 →

  • 从训练作业中导入模型文件创建模型

    训练作业中导入模型文件创建模型 在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    活动时间 最近一次模型训练执行的时间。 创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务的描述信息,支持单击“”重新编辑。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看和配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。

    来自:帮助中心

    查看更多 →

  • 创建工程

    默认按倒序排序。 任务名称 模型训练任务的名称 任务描述 模型训练任务的描述信息 任务创建时间 模型训练任务创建的时间 训练用时 模型训练耗时时长 Tensorboard Tensorboard状态 训练状态 显示训练任务当前的状态。 包括如下状态: ALL显示所有训练任务。 WAITING表示训练任务准备中。

    来自:帮助中心

    查看更多 →

  • 查询训练作业版本列表

    JSON 训练作业模型单个分类,包含类ID和类名。 表10 metric_values属性列表 参数 参数类型 说明 recall Float 训练作业模型单个分类召回率。 precision Float 训练作业模型单个分类精确率。 accuracy Float 训练作业模型单个分类准确率。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    ,及华为自研AI框架MindSpore。提供丰富的CPU、GPU和华为自研Ascend芯片资源,进行模型训练模型管理 模型训练服务统一的模型管理菜单。集成在线VSCode开发环境,支持对模型进行编辑修改后,生成新模型包。同时支持多模型组合编排生成新模型。支持将模型下载至本地、

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    PyTorch NPU训练指导 预训练、SFT全参微调训练、LoRA微调训练 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列、Baichuan系列、ChatGLM系列等基于ModelArts DevServer的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。训练后的模型可用于推理部署,搭建大模型问答助手。

    来自:帮助中心

    查看更多 →

  • 以PyTorch框架创建训练作业(新版训练)

    调用查询训练作业详情接口使用刚创建的训练作业返回的id查询训练作业状态。 调用查询训练作业指定任务的日志(OBS链接)接口获取训练作业日志的对应的obs路径。 调用查询训练作业指定任务的运行指标接口查看训练作业的运行指标详情。 当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件

    来自:帮助中心

    查看更多 →

  • 模型训练新建模型训练工程的时候,选择通用算法有什么作用?

    模型训练新建模型训练工程的时候,选择通用算法有什么作用? 通用算法目前包括:分类算法、拟合算法、聚类算法、其他类型。用户选择不同的通用算法类型,并勾选“创建入门模型训练代码”,便可以自动生成对应类型的代码模版。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    后等待工作流按顺序进入训练节点。 模型将会自动进入训练,无需人工介入,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 在“物体检测”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 图2 运行成功 训练完成后,您可以单击物体

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • 创建自动模型优化的训练作业

    完成超参搜索作业的创建后,训练作业需要运行一段时间。 查看超参搜索作业详情 训练作业运行结束后,可以查看自动超参搜索结果判断此训练作业是否满意。 如果训练作业是超参搜索作业,进入训练作业详情页,选择“自动超参搜索结果”页签查看超参搜索结果。 图3 超参搜索结果 父主题: 自动模型优化(AutoSearch)

    来自:帮助中心

    查看更多 →

  • 创建超参优化服务

    辑。 创建训练任务,详细请参考模型训练。 删除训练任务。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看和配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。 2(模型训练任务) 根据训练状态快速检索训练任务。 根据任务创建时间、任务名称检索训练任务。

    来自:帮助中心

    查看更多 →

  • 训练任务

    环境变量:由算法携带,可修改参数值。 选择需要归档的模型仓库。 模型仓库需提前在“数据资产 > 模型管理”中创建成功。 图3 常规训练 常规训练:基于数据集和用户算法训练模型。 图4 增量训练 增量训练:基于用户导入的模型或已完成训练模型版本(可通过${MODEL}获取该模型版本的文件路径)和新数据集使

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建工程 创建训练工程是从创建模型训练工程、编辑模型训练代码到调试模型训练代码的端到端的代码开发过程。 创建模型训练工程:创建模型训练代码编辑和调试的环境。 编辑模型训练代码:在线编辑模型训练代码。 调试模型训练代码:在线调试编辑好的模型训练代码。 创建训练工程步骤如下。 单击“创建”,弹出“创建训练”对话框。

    来自:帮助中心

    查看更多 →

  • 使用时序预测算法实现访问流量预测

    栏中的“AI应用管理 >AI应用”,进入AI应用页面。 在“AI应用 > 我的AI应用”页面,单击“创建”,进入创建AI应用页面。 在创建AI应用页面,系统会自动根据上一步训练作业填写参数,参考如下说明确认关键参数。 “元模型来源”:系统自动选择“从训练中选择 >训练作业”。 “

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    执行纵向联邦模型训练作业 功能介绍 执行纵向联邦模型训练作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/execute 表1 路径参数 参数 是否必选

    来自:帮助中心

    查看更多 →

  • 历史待下线案例

    历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 示例:从 0 到 1 制作 自定义镜像 并用于训练(Pytorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 使用ModelArts Standard一键完成商超商品识别模型部署 专属资源池训练

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了